1887

Abstract

The oxygenated long-chain mycolic acids from many mycobacteria are characterized by the presence of mid-chain cyclopropane groups, which can have either configuration or -configuration with an adjacent methyl branch. To determine the effect of these functional groups on mycolic acid conformation, surface pressure (π) versus mean molecular area isotherms of methoxy- (MeO-) mycolic acids (MAs) from , (Mtb) Canetti and Mtb H37Ra, and of keto-MAs from complex (MAC) and Mtb H37Ra were recorded and analysed. The MeO- and keto-MAs from Mtb H37Ra, containing scarcely any -cyclopropyl groups, apparently took no fully folded ‘W-form’ conformations. Keto-MA from MAC, whose -cyclopropyl group content is nearly 90 %, showed a very solid W-form conformation. MeO-MAs from and Mtb Canetti gave stable W-form conformations at lower temperatures and surface pressures and extended conformations at higher temperatures and surface pressures; their W-form conformation was not as stable as expected from their -cyclopropyl group content, probably because they had a wide range of constituent homologues. Energy level calculations of - or α-methyl -cyclopropane-containing model molecules and computer simulation studies confirmed the superior folding properties of the latter functional unit. The present results were compared with those of MeO- and keto-MAs from Mtb and from Bacillus Calmette–Guérin (BCG) reported previously. Among the oxygenated MAs, those having higher -cyclopropane content tended to take W-form conformations more firmly, implying that the meromycolate proximal intra-chain α-methyl -cyclopropane groups facilitated MA folding more than cyclopropane groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068866-0
2013-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2405.html?itemId=/content/journal/micro/10.1099/mic.0.068866-0&mimeType=html&fmt=ahah

References

  1. Aimi N. , Watanabe M. , Sasanuma Y. , Kitagawa I. . ( 2011; ). Conformation of natural unsaturated fatty acids; ab initio modeling of crystalline oleic acid and linoleic acid. . In 4th Symposium on Pharmaceutical Food Science, October 2011, Tokyo, Abstract Papers, pp. 85–90.
    [Google Scholar]
  2. Barkan D. , Liu Z. , Sacchettini J. C. , Glickman M. S. . ( 2009; ). Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. . Chem Biol 16:, 499–509. [CrossRef] [PubMed]
    [Google Scholar]
  3. Daffé M. , Lanéelle M. A. , Lacave C. . ( 1991; ). Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. . Res Microbiol 142:, 397–403. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dmitriev B. A. , Ehlers S. , Rietschel E. T. , Brennan P. J. . ( 2000; ). Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. . Int J Med Microbiol 290:, 251–258. [CrossRef] [PubMed]
    [Google Scholar]
  5. Draper P. . ( 1998; ). The outer parts of the mycobacterial envelope as permeability barriers. . Front Biosci 3:, D1253–D1261.[PubMed]
    [Google Scholar]
  6. Dubnau E. , Chan J. , Raynaud C. , Mohan V. P. , Lanéelle M.-A. , Yu K. , Quémard A. , Smith I. , Daffé M. . ( 2000; ). Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. . Mol Microbiol 36:, 630–637. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fujita Y. , Okamoto Y. , Uenishi Y. , Sunagawa M. , Uchiyama T. , Yano I. . ( 2007; ). Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. . Microb Pathog 43:, 10–21. [CrossRef] [PubMed]
    [Google Scholar]
  8. Liu J. , Barry C. E. III , Besra G. S. , Nikaido H. . ( 1996; ). Mycolic acid structure determines the fluidity of the mycobacterial cell wall. . J Biol Chem 271:, 29545–29551. [CrossRef] [PubMed]
    [Google Scholar]
  9. Minnikin D. E. . ( 1982; ). Lipids: complex lipids, their chemistry, biosynthesis and roles. . In The Biology of the Mycobacteria, vol. 1, pp. 95–184. Edited by Ratledge C. , Stanford J. L. . . New York:: Academic Press;.
    [Google Scholar]
  10. Minnikin D. E. , Parlett J. H. , Dobson G. , Goodfellow M. , Magnusson M. , Ridell M. . ( 1986; ). Lipid profiles of members of the Mycobacterium tuberculosis complex. . In Mycobacteria of Clinical Interest, pp. 75–78. Edited by Casal M. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  11. Rao V. , Gao F. , Chen B. , Jacobs W. R. Jr , Glickman M. S. . ( 2006; ). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. . J Clin Invest 116:, 1660–1667. [CrossRef] [PubMed]
    [Google Scholar]
  12. Sambandan D. , Dao D. N. , Weinrick B. C. , Vilchèze C. , Gurcha S. S. , Ojha A. , Kremer L. , Besra G. S. , Hatfull G. F. , Jacobs W. R. Jr . ( 2013; ). Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. . MBio 4:, e00222–e13. [CrossRef] [PubMed]
    [Google Scholar]
  13. Silvius J. R. , McElhaney R. N. . ( 1979; ). Effects of phospholipid acyl chain structure on thermotropic phase properties. 2. Phosphatidylcholines with unsaturated or cyclopropane acyl chains. . Chem Phys Lipids 25:, 125–134. [CrossRef]
    [Google Scholar]
  14. Vander Beken S. , Al Dulayymi J. R. , Naessens T. , Koza G. , Maza-Iglesias M. , Rowles R. , Theunissen C. , De Medts J. , Lanckacker E. . & other authors ( 2011; ). Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. . Eur J Immunol 41:, 450–460. [CrossRef] [PubMed]
    [Google Scholar]
  15. Villeneuve M. , Kawai M. , Kanashima H. , Watanabe M. , Minnikin D. E. , Nakahara H. . ( 2005; ). Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. . Biochim Biophys Acta 1715:, 71–80. [CrossRef] [PubMed]
    [Google Scholar]
  16. Villeneuve M. , Kawai M. , Watanabe M. , Aoyagi Y. , Hitotsuyanagi Y. , Takeya K. , Gouda H. , Hirono S. , Minnikin D. E. , Nakahara H. . ( 2007; ). Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. . Biochim Biophys Acta 1768:, 1717–1726. [CrossRef] [PubMed]
    [Google Scholar]
  17. Villeneuve M. , Kawai M. , Watanabe M. , Aoyagi Y. , Hitotsuyanagi Y. , Takeya K. , Gouda H. , Hirono S. , Minnikin D. E. , Nakahara H. . ( 2010; ). Differential conformational behaviors of α-mycolic acids in Langmuir monolayers and computer simulations. . Chem Phys Lipids 163:, 569–579. [CrossRef] [PubMed]
    [Google Scholar]
  18. Vollhardt D. . ( 2007; ). Effect of unsaturation in fatty acids on the main characteristics of Langmuir monolayers. . J Phys Chem 111:, 6805–6812.
    [Google Scholar]
  19. Watanabe M. , Aoyagi Y. , Ridell M. , Minnikin D. E. . ( 2001; ). Separation and characterization of individual mycolic acids in representative mycobacteria. . Microbiology 147:, 1825–1837.[PubMed]
    [Google Scholar]
  20. Watanabe M. , Aoyagi Y. , Mitome H. , Fujita T. , Naoki H. , Ridell M. , Minnikin D. E. . ( 2002; ). Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. . Microbiology 148:, 1881–1902.[PubMed]
    [Google Scholar]
  21. Welles H. L. , Zografi G. , Scrimgeour C. M. , Gunstone F. D. . ( 1975;). The effect of ethylenic and acetylenic groups on the properties of fatty acid monolayers.. In Monolayers (Advances in Chemistry series vol. 144), pp. 135–152. Edited by Goddard E. D. . . Washington D.C.:: American Chemical Society;.[CrossRef]
    [Google Scholar]
  22. Yuan Y. , Zhu Y. Q. , Crane D. D. , Barry C. E. III . ( 1998; ). The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. . Mol Microbiol 29:, 1449–1458. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068866-0
Loading
/content/journal/micro/10.1099/mic.0.068866-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error