1887

Abstract

The oxygenated long-chain mycolic acids from many mycobacteria are characterized by the presence of mid-chain cyclopropane groups, which can have either configuration or -configuration with an adjacent methyl branch. To determine the effect of these functional groups on mycolic acid conformation, surface pressure (π) versus mean molecular area isotherms of methoxy- (MeO-) mycolic acids (MAs) from , (Mtb) Canetti and Mtb H37Ra, and of keto-MAs from complex (MAC) and Mtb H37Ra were recorded and analysed. The MeO- and keto-MAs from Mtb H37Ra, containing scarcely any -cyclopropyl groups, apparently took no fully folded ‘W-form’ conformations. Keto-MA from MAC, whose -cyclopropyl group content is nearly 90 %, showed a very solid W-form conformation. MeO-MAs from and Mtb Canetti gave stable W-form conformations at lower temperatures and surface pressures and extended conformations at higher temperatures and surface pressures; their W-form conformation was not as stable as expected from their -cyclopropyl group content, probably because they had a wide range of constituent homologues. Energy level calculations of - or α-methyl -cyclopropane-containing model molecules and computer simulation studies confirmed the superior folding properties of the latter functional unit. The present results were compared with those of MeO- and keto-MAs from Mtb and from Bacillus Calmette–Guérin (BCG) reported previously. Among the oxygenated MAs, those having higher -cyclopropane content tended to take W-form conformations more firmly, implying that the meromycolate proximal intra-chain α-methyl -cyclopropane groups facilitated MA folding more than cyclopropane groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068866-0
2013-11-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2405.html?itemId=/content/journal/micro/10.1099/mic.0.068866-0&mimeType=html&fmt=ahah

References

  1. Aimi N., Watanabe M., Sasanuma Y., Kitagawa I.. ( 2011;). Conformation of natural unsaturated fatty acids; ab initio modeling of crystalline oleic acid and linoleic acid. 4th Symposium on Pharmaceutical Food Science, October 2011, Tokyo85–90
    [Google Scholar]
  2. Barkan D., Liu Z., Sacchettini J. C., Glickman M. S.. ( 2009;). Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. . Chem Biol16:499–509 [CrossRef][PubMed]
    [Google Scholar]
  3. Daffé M., Lanéelle M. A., Lacave C.. ( 1991;). Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. . Res Microbiol142:397–403 [CrossRef][PubMed]
    [Google Scholar]
  4. Dmitriev B. A., Ehlers S., Rietschel E. T., Brennan P. J.. ( 2000;). Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol290:251–258 [CrossRef][PubMed]
    [Google Scholar]
  5. Draper P.. ( 1998;). The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci3:D1253–D1261[PubMed]
    [Google Scholar]
  6. Dubnau E., Chan J., Raynaud C., Mohan V. P., Lanéelle M.-A., Yu K., Quémard A., Smith I., Daffé M.. ( 2000;). Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol36:630–637 [CrossRef][PubMed]
    [Google Scholar]
  7. Fujita Y., Okamoto Y., Uenishi Y., Sunagawa M., Uchiyama T., Yano I.. ( 2007;). Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog43:10–21 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu J., Barry C. E. III, Besra G. S., Nikaido H.. ( 1996;). Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem271:29545–29551 [CrossRef][PubMed]
    [Google Scholar]
  9. Minnikin D. E.. ( 1982;). Lipids: complex lipids, their chemistry, biosynthesis and roles. The Biology of the Mycobacteriavol. 195–184 Ratledge C., Stanford J. L.. New York: Academic Press;
    [Google Scholar]
  10. Minnikin D. E., Parlett J. H., Dobson G., Goodfellow M., Magnusson M., Ridell M.. ( 1986;). Lipid profiles of members of the Mycobacterium tuberculosis complex. Mycobacteria of Clinical Interest75–78 Casal M.. Amsterdam: Elsevier;
    [Google Scholar]
  11. Rao V., Gao F., Chen B., Jacobs W. R. Jr, Glickman M. S.. ( 2006;). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest116:1660–1667 [CrossRef][PubMed]
    [Google Scholar]
  12. Sambandan D., Dao D. N., Weinrick B. C., Vilchèze C., Gurcha S. S., Ojha A., Kremer L., Besra G. S., Hatfull G. F., Jacobs W. R. Jr. ( 2013;). Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. . MBio4:e00222–e13 [CrossRef][PubMed]
    [Google Scholar]
  13. Silvius J. R., McElhaney R. N.. ( 1979;). Effects of phospholipid acyl chain structure on thermotropic phase properties. 2. Phosphatidylcholines with unsaturated or cyclopropane acyl chains. Chem Phys Lipids25:125–134 [CrossRef]
    [Google Scholar]
  14. Vander Beken S., Al Dulayymi J. R., Naessens T., Koza G., Maza-Iglesias M., Rowles R., Theunissen C., De Medts J., Lanckacker E.. & other authors ( 2011;). Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol41:450–460 [CrossRef][PubMed]
    [Google Scholar]
  15. Villeneuve M., Kawai M., Kanashima H., Watanabe M., Minnikin D. E., Nakahara H.. ( 2005;). Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. . Biochim Biophys Acta1715:71–80 [CrossRef][PubMed]
    [Google Scholar]
  16. Villeneuve M., Kawai M., Watanabe M., Aoyagi Y., Hitotsuyanagi Y., Takeya K., Gouda H., Hirono S., Minnikin D. E., Nakahara H.. ( 2007;). Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta1768:1717–1726 [CrossRef][PubMed]
    [Google Scholar]
  17. Villeneuve M., Kawai M., Watanabe M., Aoyagi Y., Hitotsuyanagi Y., Takeya K., Gouda H., Hirono S., Minnikin D. E., Nakahara H.. ( 2010;). Differential conformational behaviors of α-mycolic acids in Langmuir monolayers and computer simulations. Chem Phys Lipids163:569–579 [CrossRef][PubMed]
    [Google Scholar]
  18. Vollhardt D.. ( 2007;). Effect of unsaturation in fatty acids on the main characteristics of Langmuir monolayers. J Phys Chem111:6805–6812
    [Google Scholar]
  19. Watanabe M., Aoyagi Y., Ridell M., Minnikin D. E.. ( 2001;). Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology147:1825–1837[PubMed]
    [Google Scholar]
  20. Watanabe M., Aoyagi Y., Mitome H., Fujita T., Naoki H., Ridell M., Minnikin D. E.. ( 2002;). Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology148:1881–1902[PubMed]
    [Google Scholar]
  21. Welles H. L., Zografi G., Scrimgeour C. M., Gunstone F. D.. 1975; The effect of ethylenic and acetylenic groups on the properties of fatty acid monolayers.. MonolayersAdvances in Chemistry series135–152 Goddard E. D.. Washington D.C.: American Chemical Society;[CrossRef]
    [Google Scholar]
  22. Yuan Y., Zhu Y. Q., Crane D. D., Barry C. E. III. ( 1998;). The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. . Mol Microbiol29:1449–1458 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068866-0
Loading
/content/journal/micro/10.1099/mic.0.068866-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error