1887

Abstract

is a frequent cause of hospital-acquired pneumonia, and has recently increased in incidence as the causative agent of severe disease in troops wounded in Afghanistan and Iraq. Clinical approaches are limited since strains isolated from patients are extremely resistant to current antimicrobials. can survive desiccation and during outbreaks has been recovered from various sites in the patients’ environment. To better understand its prevalence in hospital settings, we used a stainless steel washer (SSW) platform to investigate biofilm formation on abiotic surfaces. Scanning electron microscopy demonstrated that forms strong biofilms on stainless steel surfaces. This platform was combined with a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay to observe the metabolic activity of bacterial cells, and to facilitate the manipulation and comparison of multiple clinical strains. A strong correlation between XTT and c.f.u. assays was demonstrated. To complement the cell viability assays, biofilm mass was measured by crystal violet staining. Furthermore, the effect of commonly used disinfectants and environmental stressors on biofilms and planktonic cells was compared and characterized. Biofilms on SSWs were significantly more resistant than their planktonic counterparts, providing additional evidence that may allow us to understand the high prevalence of this microbe in hospital settings. Our results validate that SSWs are a simple, versatile and innovative method to study biofilms .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068825-0
2013-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2594.html?itemId=/content/journal/micro/10.1099/mic.0.068825-0&mimeType=html&fmt=ahah

References

  1. Antunes L. C., Imperi F., Carattoli A., Visca P. ( 2011). Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 6:e22674 [View Article][PubMed]
    [Google Scholar]
  2. Arnold J. W., Bailey G. W. ( 2000). Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci 79:1839–1845[PubMed] [CrossRef]
    [Google Scholar]
  3. Bergogne-Bérézin E., Decré D., Joly-Guillou M. -L. ( 1993). Opportunistic nosocomial multiply resistant bacterial infections – their treatment and prevention. J Antimicrob Chemother 32: Suppl. A 39–47 [View Article][PubMed]
    [Google Scholar]
  4. Bonomo R. A., Szabo D. ( 2006). Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa . Clin Infect Dis 43: Suppl. 2 S49–S56 [View Article][PubMed]
    [Google Scholar]
  5. Bullitt E., Makowski L. ( 1995). Structural polymorphism of bacterial adhesion pili. Nature 373:164–167 [View Article][PubMed]
    [Google Scholar]
  6. Chandra J., Mukherjee P. K., Ghannoum M. A. ( 2008). In vitro growth and analysis of Candida biofilms. Nat Protoc 3:1909–1924 [View Article][PubMed]
    [Google Scholar]
  7. Choi C. H., Lee E. Y., Lee Y. C., Park T. I., Kim H. J., Hyun S. H., Kim S. A., Lee S. K., Lee J. C. ( 2005). Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 7:1127–1138 [View Article][PubMed]
    [Google Scholar]
  8. Choi A. H., Slamti L., Avci F. Y., Pier G. B., Maira-Litrán T. ( 2009). The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191:5953–5963 [View Article][PubMed]
    [Google Scholar]
  9. Costa G. F., Tognim M. C., Cardoso C. L., Carrara-Marrone F. E., Garcia L. B. ( 2006). Preliminary evaluation of adherence on abiotic and cellular surfaces of Acinetobacter baumannii strains isolated from catheter tips. Braz J Infect Dis 10:346–351 [View Article][PubMed]
    [Google Scholar]
  10. de Breij A., Gaddy J., van der Meer J., Koning R., Koster A., van den Broek P., Actis L., Nibbering P., Dijkshoorn L. ( 2009). CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response. Res Microbiol 160:213–218 [View Article][PubMed]
    [Google Scholar]
  11. de Breij A., Dijkshoorn L., Lagendijk E., van der Meer J., Koster A., Bloemberg G., Wolterbeek R., van den Broek P., Nibbering P. ( 2010). Do biofilm formation and interactions with human cells explain the clinical success of Acinetobacter baumannii?. PLoS ONE 5:e10732 [View Article][PubMed]
    [Google Scholar]
  12. Dijkshoorn L., Nemec A., Seifert H. ( 2007). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii . Nat Rev Microbiol 5:939–951 [View Article][PubMed]
    [Google Scholar]
  13. Donlan R. M. ( 2002). Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890 [View Article][PubMed]
    [Google Scholar]
  14. Dorsey C. W., Tomaras A. P., Actis L. A. ( 2006). Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Plasmid 56:112–123 [View Article][PubMed]
    [Google Scholar]
  15. Espinal P., Martí S., Vila J. ( 2012). Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 80:56–60 [View Article][PubMed]
    [Google Scholar]
  16. Fournier P. E., Richet H., Weinstein R. A. ( 2006). The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42:692–699 [View Article][PubMed]
    [Google Scholar]
  17. Gaddy J. A., Actis L. A. ( 2009). Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4:273–278 [View Article][PubMed]
    [Google Scholar]
  18. Hujer K. M., Hujer A. M., Hulten E. A., Bajaksouzian S., Adams J. M., Donskey C. J., Ecker D. J., Massire C., Eshoo M. W. & other authors ( 2006). Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 50:4114–4123 [View Article][PubMed]
    [Google Scholar]
  19. Jawad A., Seifert H., Snelling A. M., Heritage J., Hawkey P. M. ( 1998). Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 36:1938–1941[PubMed]
    [Google Scholar]
  20. Lee H. W., Koh Y. M., Kim J., Lee J. C., Lee Y. C., Seol S. Y., Cho D. T., Kim J. ( 2008). Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54 [View Article][PubMed]
    [Google Scholar]
  21. Loehfelm T. W., Luke N. R., Campagnari A. A. ( 2008). Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 190:1036–1044 [View Article][PubMed]
    [Google Scholar]
  22. Luke N. R., Sauberan S. L., Russo T. A., Beanan J. M., Olson R., Loehfelm T. W., Cox A. D., St Michael F., Vinogradov E. V., Campagnari A. A. ( 2010). Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect Immun 78:2017–2023 [View Article][PubMed]
    [Google Scholar]
  23. Martinez L. R., Casadevall A. ( 2005). Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73:6350–6362 [View Article][PubMed]
    [Google Scholar]
  24. Martinez L. R., Casadevall A. ( 2007). Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601 [View Article][PubMed]
    [Google Scholar]
  25. McKinney C. W., Pruden A. ( 2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46:13393–13400 [View Article][PubMed]
    [Google Scholar]
  26. Merritt J. H., Kadouri D. E., O’Toole G. A. ( 2005). Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1, Unit 1B 1.
    [Google Scholar]
  27. Navon-Venezia S., Leavitt A., Carmeli Y. ( 2007). High tigecycline resistance in multidrug-resistant Acinetobacter baumannii . J Antimicrob Chemother 59:772–774 [View Article][PubMed]
    [Google Scholar]
  28. O’Toole G. A. ( 2011). Microtiter dish biofilm formation assay. J Vis Exp47ii [View Article][PubMed]
    [Google Scholar]
  29. Pour N. K., Dusane D. H., Dhakephalkar P. K., Zamin F. R., Zinjarde S. S., Chopade B. A. ( 2011). Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol Med Microbiol 62:328–338 [View Article][PubMed]
    [Google Scholar]
  30. Rajamohan G., Srinivasan V. B., Gebreyes W. A. ( 2010). Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii . J Antimicrob Chemother 65:1919–1925 [View Article][PubMed]
    [Google Scholar]
  31. Ramage G., Vandewalle K., Wickes B. L., López-Ribot J. L. ( 2001). Characteristics of biofilm formation by Candida albicans . Rev Iberoam Micol 18:163–170[PubMed]
    [Google Scholar]
  32. Rao R. S., Karthika R. U., Singh S. P., Shashikala P., Kanungo R., Jayachandran S., Prashanth K. ( 2008). Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii . Indian J Med Microbiol 26:333–337 [View Article][PubMed]
    [Google Scholar]
  33. Roca I., Espinal P., Vila-Farrés X., Vila J. ( 2012). The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol 3:148 [View Article][PubMed]
    [Google Scholar]
  34. Rosenberg M., Bayer E. A., Delarea J., Rosenberg E. ( 1982). Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937[PubMed]
    [Google Scholar]
  35. Russo T. A., Luke N. R., Beanan J. M., Olson R., Sauberan S. L., MacDonald U., Schultz L. W., Umland T. C., Campagnari A. A. ( 2010). The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect Immun 78:3993–4000 [View Article][PubMed]
    [Google Scholar]
  36. Sheppard F. R., Keiser P., Craft D. W., Gage F., Robson M., Brown T. S., Petersen K., Sincock S., Kasper M. & other authors ( 2010). The majority of US combat casualty soft-tissue wounds are not infected or colonized upon arrival or during treatment at a continental US military medical facility. Am J Surg 200:489–495 [View Article][PubMed]
    [Google Scholar]
  37. Tomaras A. P., Dorsey C. W., Edelmann R. E., Actis L. A. ( 2003). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484 [View Article][PubMed]
    [Google Scholar]
  38. Tomaras A. P., Flagler M. J., Dorsey C. W., Gaddy J. A., Actis L. A. ( 2008). Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 154:3398–3409 [View Article][PubMed]
    [Google Scholar]
  39. Wendt C., Dietze B., Dietz E., Rüden H. ( 1997). Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 35:1394–1397[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068825-0
Loading
/content/journal/micro/10.1099/mic.0.068825-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error