1887

Abstract

MADS-box transcription factors (TFs) regulate functionally diverse gene targets in eukaryotes. In select ascomycetes, MADS-box TFs have been shown to play a role in virulence, and vegetative and sexual development. Here, we characterized MADS-box TFs, Mads1 and Mads2, in terms of their roles in secondary metabolism and sexual mating. Sequence analyses showed that and encode TFs with a SRF-type dimerization domain and a MEF2-type dimerization domain, respectively. The and knockout mutants (Fmt1 and Fmt2 strains, respectively) exhibited decreased vegetative growth and FB1 production when compared to the wild-type. Fmt1 showed reduced expression of 14 polyketide synthase (PKS) genes present in the organism, whereas Fmt2 did not display a change in PKS gene expression. Significantly, the deletion of and in the genotype (Fmt4 and Fmt5 strains, respectively) led to strains that failed to produce perithecia and ascospores when crossed with the wild-type strain. Notably, deletion of either gene did not have an effect on the ability of the fungus to colonize maize stalk or kernels. FB1 production and PKS expression data suggest that Mads1 is a broad regulator of secondary metabolism in , and may target regulons upstream of Mads2 to influence FB1 production. In addition, MADS-box TFs in play a critical role in the perithecia development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068775-0
2013-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2259.html?itemId=/content/journal/micro/10.1099/mic.0.068775-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Buylla E. R., Pelaz S., Liljegren S. J., Gold S. E., Burgeff C., Ditta G. S., Ribas de Pouplana L., Martínez-Castilla L., Yanofsky M. F.. ( 2000;). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. . Proc Natl Acad Sci U S A 97:, 5328–5333. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrera L. O., Ren B.. ( 2006;). The transcriptional regulatory code of eukaryotic cells–insights from genome-wide analysis of chromatin organization and transcription factor binding. . Curr Opin Cell Biol 18:, 291–298. [CrossRef][PubMed]
    [Google Scholar]
  3. Bloemendal S., Bernhards Y., Bartho K., Dettmann A., Voigt O., Teichert I., Seiler S., Wolters D. A., Pöggeler S., Kück U.. ( 2012;). A homologue of the human STRIPAK complex controls sexual development in fungi. . Mol Microbiol 84:, 310–323. [CrossRef][PubMed]
    [Google Scholar]
  4. Brown D. W., Yu J. H., Kelkar H. S., Fernandes M., Nesbitt T. C., Keller N. P., Adams T. H., Leonard T. J.. ( 1996;). Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans.. Proc Natl Acad Sci U S A 93:, 1418–1422. [CrossRef][PubMed]
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P.. ( 2002;). Relationship between secondary metabolism and fungal development. . Microbiol Mol Biol Rev 66:, 447–459. [CrossRef][PubMed]
    [Google Scholar]
  6. Damveld R. A., Arentshorst M., Franken A., vanKuyk P. A., Klis F. M., van den Hondel C. A., Ram A. F. J.. ( 2005;). The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. . Mol Microbiol 58:, 305–319. [CrossRef][PubMed]
    [Google Scholar]
  7. De Bodt S., Raes J., Van de Peer Y., Theissen G.. ( 2003;). And then there were many: MADS goes genomic. . Trends Plant Sci 8:, 475–483. [CrossRef][PubMed]
    [Google Scholar]
  8. De Jong J. C., McCormack B. J., Smirnoff N., Talbot N. J.. ( 1997;). Glycerol generates turgor in rice blast. . Nature 389:, 244–245. [CrossRef]
    [Google Scholar]
  9. Desjardins A. E.. ( 2003;). Gibberella from A (venaceae) to Z (eae). . Annu Rev Phytopathol 41:, 177–198. [CrossRef][PubMed]
    [Google Scholar]
  10. Dodou E., Treisman R.. ( 1997;). The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. . Mol Cell Biol 17:, 1848–1859.[PubMed]
    [Google Scholar]
  11. Duncan K. E., Howard R. J.. ( 2010;). Biology of maize kernel infection by Fusarium verticillioides.. Mol Plant Microbe Interact 23:, 6–16. [CrossRef][PubMed]
    [Google Scholar]
  12. Flaherty J. E., Woloshuk C. P.. ( 2004;). Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. . Appl Environ Microbiol 70:, 2653–2659. [CrossRef][PubMed]
    [Google Scholar]
  13. Flaherty J. E., Pirttilä A. M., Bluhm B. H., Woloshuk C. P.. ( 2003;). PAC1, a pH-regulatory gene from Fusarium verticillioides.. Appl Environ Microbiol 69:, 5222–5227. [CrossRef][PubMed]
    [Google Scholar]
  14. Fraser J. A., Heitman J.. ( 2004;). Evolution of fungal sex chromosomes. . Mol Microbiol 51:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  15. Fraser J. A., Heitman J.. ( 2005;). Chromosomal sex-determining regions in animals, plants and fungi. . Curr Opin Genet Dev 15:, 645–651. [CrossRef][PubMed]
    [Google Scholar]
  16. Fu J., Hettler E., Wickes B. L.. ( 2006;). Split marker transformation increases homologous integration frequency in Cryptococcus neoformans.. Fungal Genet Biol 43:, 200–212. [CrossRef][PubMed]
    [Google Scholar]
  17. Gelderblom W. C. A., Jaskiewicz K., Marasas W. F. O., Thiel P. G., Horak R. M., Vleggaar R., Kriek N. P. J.. ( 1988;). Fumonisins–novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme.. Appl Environ Microbiol 54:, 1806–1811.[PubMed]
    [Google Scholar]
  18. Heintzman N. D., Ren B.. ( 2007;). The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. . Cell Mol Life Sci 64:, 386–400. [CrossRef][PubMed]
    [Google Scholar]
  19. Hopwood D. A., Sherman D. H.. ( 1990;). Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. . Annu Rev Genet 24:, 37–66. [CrossRef][PubMed]
    [Google Scholar]
  20. Howard R. J., Ferrari M. A., Roach D. H., Money N. P.. ( 1991;). Penetration of hard substrates by a fungus employing enormous turgor pressures. . Proc Natl Acad Sci U S A 88:, 11281–11284. [CrossRef][PubMed]
    [Google Scholar]
  21. Johnson A. D.. ( 1995;). Molecular mechanisms of cell-type determination in budding yeast. . Curr Opin Genet Dev 5:, 552–558. [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson P. F., McKnight S. L.. ( 1989;). Eukaryotic transcriptional regulatory proteins. . Annu Rev Biochem 58:, 799–839. [CrossRef][PubMed]
    [Google Scholar]
  23. Kim H., Smith J. E., Ridenour J. B., Woloshuk C. P., Bluhm B. H.. ( 2011;). HXK1 regulates carbon catabolism, sporulation, fumonisin B1 production and pathogenesis in Fusarium verticillioides. . Microbiology 157:, 2658–2669. [CrossRef][PubMed]
    [Google Scholar]
  24. Kroken S., Glass N. L., Taylor J. W., Yoder O. C., Turgeon B. G.. ( 2003;). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. . Proc Natl Acad Sci U S A 100:, 15670–15675. [CrossRef][PubMed]
    [Google Scholar]
  25. Krüger J., Aichinger C., Kahmann R., Bölker M.. ( 1997;). A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential. . Genetics 147:, 1643–1652.[PubMed]
    [Google Scholar]
  26. Lemon B., Tjian R.. ( 2000;). Orchestrated response: a symphony of transcription factors for gene control. . Genes Dev 14:, 2551–2569. [CrossRef][PubMed]
    [Google Scholar]
  27. Lengeler K. B., Davidson R. C., D’souza C., Harashima T., Shen W. C., Wang P., Pan X. W., Waugh M., Heitman J.. ( 2000;). Signal transduction cascades regulating fungal development and virulence. . Microbiol Mol Biol Rev 64:, 746–785. [CrossRef][PubMed]
    [Google Scholar]
  28. Leslie J. F., Summerell B. A.. ( 2006;). The Fusarium Laboratory Manual. Ames, IA:: Blackwell Publishing;. [CrossRef]
    [Google Scholar]
  29. Levin D. E.. ( 2005;). Cell wall integrity signaling in Saccharomyces cerevisiae.. Microbiol Mol Biol Rev 69:, 262–291. [CrossRef][PubMed]
    [Google Scholar]
  30. Ma L. J., van der Does H. C., Borkovich K. A., Coleman J. J., Daboussi M. J., Di Pietro A., Dufresne M., Freitag M., Grabherr M. et al. ( 2010;). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium.. Nature 464:, 367–373. [CrossRef][PubMed]
    [Google Scholar]
  31. Marasas W. F. O., Miller J. D., Riley R. T., Visconti A.. ( 2001;). Fumonisins – occurrence, toxicology, metabolism and risk assessment. . In Fusarium: Paul E. Nelson Memorial Symposium, pp. 332–359. St Paul, MN:: American Phytopathological Society;.
    [Google Scholar]
  32. Mead J., Bruning A. R., Gill M. K., Steiner A. M., Acton T. B., Vershon A. K.. ( 2002;). Interactions of the Mcm1 MADS box protein with cofactors that regulate mating in yeast. . Mol Cell Biol 22:, 4607–4621. [CrossRef][PubMed]
    [Google Scholar]
  33. Mehrabi R., Ding S., Xu J. R.. ( 2008;). MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea.. Eukaryot Cell 7:, 791–799. [CrossRef][PubMed]
    [Google Scholar]
  34. Messenguy F., Dubois E.. ( 2003;). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. . Gene 316:, 1–21. [CrossRef][PubMed]
    [Google Scholar]
  35. Munkvold G. P., Desjardins A. E.. ( 1997;). Fumonisins in maize - can we reduce their occurrence?. Plant Disease 81:, 556–565. [CrossRef]
    [Google Scholar]
  36. Nelson P. E., Desjardins A. E., Plattner R. D.. ( 1993;). Fumonisins, mycotoxins produced by fusarium species: biology, chemistry, and significance. . Annu Rev Phytopathol 31:, 233–252. [CrossRef][PubMed]
    [Google Scholar]
  37. Nolting N., Pöggeler S.. ( 2006a;). A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. . Mol Microbiol 62:, 853–868. [CrossRef][PubMed]
    [Google Scholar]
  38. Nolting N., Pöggeler S.. ( 2006b;). A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.. Eukaryot Cell 5:, 1043–1056. [CrossRef][PubMed]
    [Google Scholar]
  39. Norman C., Runswick M., Pollock R., Treisman R.. ( 1988;). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. . Cell 55:, 989–1003. [CrossRef][PubMed]
    [Google Scholar]
  40. Passmore S., Elble R., Tye B. K.. ( 1989;). A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. . Genes Dev 3:, 921–935. [CrossRef][PubMed]
    [Google Scholar]
  41. Proctor R. H., Desjardins A. E., Plattner R. D., Hohn T. M.. ( 1999;). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. . Fungal Genet Biol 27:, 100–112. [CrossRef][PubMed]
    [Google Scholar]
  42. Sagaram U. S., Shim W. B.. ( 2007;). Fusarium verticillioides GBB1, a gene encoding heterotrimeric G protein β subunit, is associated with fumonisin B1 biosynthesis and hyphal development but not with fungal virulence. . Mol Plant Pathol 8:, 375–384. [CrossRef][PubMed]
    [Google Scholar]
  43. Sagaram U. S., Butchko R. A. E., Shim W. B.. ( 2006;). The putative monomeric G-protein GBP1 is negatively associated with fumonisin B1 production in Fusarium verticillioides. . Mol Plant Pathol 7:, 381–389. [CrossRef][PubMed]
    [Google Scholar]
  44. Sagaram U. S., Shaw B. D., Shim W. B.. ( 2007;). Fusarium verticillioides GAP1, a gene encoding a putative glycolipid-anchored surface protein, participates in conidiation and cell wall structure but not virulence. . Microbiology 153:, 2850–2861. [CrossRef][PubMed]
    [Google Scholar]
  45. Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H.. ( 1990;). Genetic control of flower development by homeotic genes in Antirrhinum majus.. Science 250:, 931–936. [CrossRef][PubMed]
    [Google Scholar]
  46. Shim W. B., Woloshuk C. P.. ( 1999;). Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi.. FEMS Microbiol Lett 177:, 109–116. [CrossRef][PubMed]
    [Google Scholar]
  47. Shim W. B., Woloshuk C. P.. ( 2001;). Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. . Appl Environ Microbiol 67:, 1607–1612. [CrossRef][PubMed]
    [Google Scholar]
  48. Shin J. H., Kim J. E., Malapi-Wight M., Choi Y. E., Shaw B. D., Shim W. B.. ( 2013;). Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.. Mol Plant Pathol 14:, 518–529. [CrossRef][PubMed]
    [Google Scholar]
  49. Shore P., Sharrocks A. D.. ( 1995;). The MADS-box family of transcription factors. . Eur J Biochem 229:, 1–13. [CrossRef][PubMed]
    [Google Scholar]
  50. Sommer H., Beltrán J. P., Huijser P., Pape H., Lönnig W. E., Saedler H., Schwarz-Sommer Z.. ( 1990;). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. . EMBO J 9:, 605–613.[PubMed]
    [Google Scholar]
  51. Staunton J., Weissman K. J.. ( 2001;). Polyketide biosynthesis: a millennium review. . Nat Prod Rep 18:, 380–416. [CrossRef][PubMed]
    [Google Scholar]
  52. Stevens R. B.. ( 1974;). Mycology Guidebook – Mycological Society of America. Seattle, WA:: University of Washington Press;.
    [Google Scholar]
  53. Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H. Jr. ( 1991;). Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme.. J Biol Chem 266:, 14486–14490.[PubMed]
    [Google Scholar]
  54. Woloshuk C. P., Shim W.-B.. ( 2013;). Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. . FEMS Microbiol Rev 37:, 94–109. [CrossRef][PubMed]
    [Google Scholar]
  55. Wu W., Huang X., Cheng J., Li Z., de Folter S., Huang Z., Jiang X., Pang H., Tao S.. ( 2011;). Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites. . Mol Biol Evol 28:, 501–511. [CrossRef][PubMed]
    [Google Scholar]
  56. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M.. ( 1990;). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. . Nature 346:, 35–39. [CrossRef][PubMed]
    [Google Scholar]
  57. Zhou X. Y., Liu W. D., Wang C. F., Xu Q. J., Wang Y., Ding S. L., Xu J. R.. ( 2011;). A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae.. Mol Microbiol 80:, 33–53. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068775-0
Loading
/content/journal/micro/10.1099/mic.0.068775-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error