1887

Abstract

Thuricin CD is a two component narrow spectrum bacteriocin comprising two peptides with targeted activity against . This study examined the bioavailability of thuricin with a view to developing it as an effective antimicrobial against intestinal infection. One of the peptides, Trn-β, was found to be degraded by the gastric enzymes pepsin and α-chymotrypsin both and , whereas Trn-α was resistant to digestion by these enzymes and hence was detected in the intestinal porcine digesta following oral ingestion by pigs. In order to determine if spores of the producing organism DPC 6431 could be used to deliver the bacteriocin to the gut, spores were fed to 30 mice (approx. 10–2×10 per animal) and their germination, growth and production of thuricin in the gastrointestinal tract (GIT) of the animals was monitored. Almost 99 % of the spores delivered to the GIT were excreted in the first 24 h and neither Trn-α nor Trn-β was detected in the gut or faecal samples of the test mice, indicating that ingestion of spores may not be a suitable vehicle for the delivery of thuricin CD. When thuricin CD was delivered rectally to mice ( = 40) and shedding monitored at 1, 6, 12 and 24 h post-treatment, there was a >95 % (>1.5 log units) reduction of 027 in the colon contents of infected mice ( = 10) 1 h post-treatment compared with the control group ( = 10; <0.001). Furthermore, 6 h post-treatment there was a further 1.5 log reduction in numbers ( = 10) relative to the control group ( = 10; <0.05). These results would suggest that rectal administration of thuricin may be a promising mode of delivery of thuricin CD to the colon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068767-0
2014-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/439.html?itemId=/content/journal/micro/10.1099/mic.0.068767-0&mimeType=html&fmt=ahah

References

  1. Baines S. D. , O’Connor R. , Freeman J. , Fawley W. N. , Harmanus C. , Mastrantonio P. , Kuijper E. J. , Wilcox M. H. . ( 2008; ). Emergence of reduced susceptibility to metronidazole in Clostridium difficile . . J Antimicrob Chemother 62:, 1046–1052. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bartoloni A. , Mantella A. , Goldstein B. P. , Dei R. , Benedetti M. , Sbaragli S. , Paradisi F. . ( 2004; ). In-vitro activity of nisin against clinical isolates of Clostridium difficile . . J Chemother 16:, 119–121.[PubMed] [CrossRef]
    [Google Scholar]
  3. Bernbom N. , Licht T. R. , Brogren C. H. , Jelle B. , Johansen A. H. , Badiola I. , Vogensen F. K. , Nørrung B. . ( 2006; ). Effects of Lactococcus lactis on composition of intestinal microbiota: role of nisin. . Appl Environ Microbiol 72:, 239–244. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brazier J. S. , Raybould R. , Patel B. , Duckworth G. , Pearson A. , Charlett A. , Duerden B. I. . HPA Regional Microbiology Network ( 2008; ). Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007–08. . Euro Surveill 13:, 1–5.[PubMed]
    [Google Scholar]
  5. Cornely O. A. . ( 2012; ). Current and emerging management options for Clostridium difficile infection: what is the role of fidaxomicin. ? Clin Microbiol Infect 18: (Suppl. 6), 28–35. [CrossRef] [PubMed]
    [Google Scholar]
  6. Corr S. C. , Li Y. , Riedel C. U. , O’Toole P. W. , Hill C. , Gahan C. G. . ( 2007; ). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. . Proc Natl Acad Sci U S A 104:, 7617–7621. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cutting S. M. . ( 2011; ). Bacillus probiotics. . Food Microbiol 28:, 214–220. [CrossRef] [PubMed]
    [Google Scholar]
  8. Diez-Gonzalez F. . ( 2007; ). Applications of bacteriocins in livestock. . Curr Issues Intest Microbiol 8:, 15–23.[PubMed]
    [Google Scholar]
  9. Fox J. L. . ( 2011; ). Optimer resurrects C. difficile antibiotic to win approval. . Nat Biotechnol 29:, 557–558. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gardiner G. E. , Rea M. C. , O’Riordan B. , O’Connor P. , Morgan S. M. , Lawlor P. G. , Lynch P. B. , Cronin M. , Ross R. P. , Hill C. . ( 2007; ). Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. . Appl Environ Microbiol 73:, 7103–7109. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gerding D. N. . ( 2010; ). Global epidemiology of Clostridium difficile infection in 2010. . Infect Control Hosp Epidemiol 31: (Suppl. 1), S32–S34. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hoa T. T. , Duc L. H. , Isticato R. , Baccigalupi L. , Ricca E. , Van P. H. , Cutting S. M. . ( 2001; ). Fate and dissemination of Bacillus subtilis spores in a murine model. . Appl Environ Microbiol 67:, 3819–3823. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hong H. A. , Duc L. H. , Cutting S. M. . ( 2005; ). The use of bacterial spore formers as probiotics. . FEMS Microbiol Rev 29:, 813–835. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hong H. A. , To E. , Fakhry S. , Baccigalupi L. , Ricca E. , Cutting S. M. . ( 2009a; ). Defining the natural habitat of Bacillus spore-formers. . Res Microbiol 160:, 375–379. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hong H. A. , Khaneja R. , Tam N. M. , Cazzato A. , Tan S. , Urdaci M. , Brisson A. , Gasbarrini A. , Barnes I. , Cutting S. M. . ( 2009b; ). Bacillus subtilis isolated from the human gastrointestinal tract. . Res Microbiol 160:, 134–143. [CrossRef] [PubMed]
    [Google Scholar]
  16. Huang H. , Weintraub A. , Fang H. , Nord C. E. . ( 2009; ). Antimicrobial resistance in Clostridium difficile . . Int J Antimicrob Agents 34:, 516–522. [CrossRef] [PubMed]
    [Google Scholar]
  17. Rea M. C. , Clayton E. , O’Connor P. M. , Shanahan F. , Kiely B. , Ross R. P. , Hill C. . ( 2007; ). Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. . J Med Microbiol 56:, 940–946. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rea M. C. , Sit C. S. , Clayton E. , O’Connor P. M. , Whittal R. M. , Zheng J. , Vederas J. C. , Ross R. P. , Hill C. . ( 2010; ). Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile . . Proc Natl Acad Sci U S A 107:, 9352–9357. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rea M. C. , Ross R. P. , Cotter P. D. , Hill C. . ( 2011a; ). Classification of bacteriocins from Gram-positive bacteria. . In Prokaryotic Antimicrobial Peptides. From Genes to Applications, pp. 29–53. Edited by Drider D. , Rebuffat S. . . New York, Dordrecht, Heidelberg, London:: Springer;. [CrossRef]
    [Google Scholar]
  20. Rea M. C. , Dobson A. , O’Sullivan O. , Crispie F. , Fouhy F. , Cotter P. D. , Shanahan F. , Kiely B. , Hill C. , Ross R. P. . ( 2011b; ). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. . Proc Natl Acad Sci U S A 108: (Suppl. 1), 4639–4644. [CrossRef] [PubMed]
    [Google Scholar]
  21. Rea M. C. , O’Sullivan O. , Shanahan F. , O’Toole P. W. , Stanton C. , Ross R. P. , Hill C. . ( 2012; ). Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. . J Clin Microbiol 50:, 867–875. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rupnik M. , Wilcox M. H. , Gerding D. N. . ( 2009; ). Clostridium difficile infection: new developments in epidemiology and pathogenesis. . Nat Rev Microbiol 7:, 526–536. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shah D. , Dang M. D. , Hasbun R. , Koo H. L. , Jiang Z. D. , DuPont H. L. , Garey K. W. . ( 2010; ). Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. . Expert Rev Anti Infect Ther 8:, 555–564. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sit C. S. , McKay R. T. , Hill C. , Ross R. P. , Vederas J. C. . ( 2011; ). The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. . J Am Chem Soc 133:, 7680–7683. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tam N. K. M. , Uyen N. Q. , Hong H. A. , Duc L. H. , Hoa T. T. , Serra C. R. , Henriques A. O. , Cutting S. M. . ( 2006; ). The intestinal life cycle of Bacillus subtilis and close relatives. . J Bacteriol 188:, 2692–2700. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068767-0
Loading
/content/journal/micro/10.1099/mic.0.068767-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error