1887

Abstract

The morphological effects of an antifungal activity produced by 16, a malt-production steep water isolate, on two food-associated fungi were examined microscopically. Spore germination was completely inhibited in and upon treatment with concentrated cell-free supernatant (cCFS) of strain 16. Furthermore, addition of antifungal cCFS to germ tubes and hyphae halted further development compared to untreated controls. Transcriptome analysis of Af293 following exposure to antifungal cCFS revealed a number of genes with altered transcription involved in a variety of cellular functions, most notably cell metabolism, suggesting a global metabolic shutdown and subsequent cell death. Increased transcription of the global regulator LaeA was also observed indicating that exposure to the antifungal activity caused a cellular stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068742-0
2013-10-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2014.html?itemId=/content/journal/micro/10.1099/mic.0.068742-0&mimeType=html&fmt=ahah

References

  1. Adebayo C. O., Aderiye B. I..( 2011;). Suspected mode of antimycotic action of brevicin SG1 against Candida albicans and Penicillium citrinum.. Food Contr22:1814–1820 [CrossRef]
    [Google Scholar]
  2. Agarwal A. K., Rogers P. D., Baerson S. R., Jacob M. R., Barker K. S., Cleary J. D., Walker L. A., Nagle D. G., Clark A. M..( 2003;). Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem278:34998–35015 [CrossRef][PubMed]
    [Google Scholar]
  3. Alcazar-Fuoli L., Mellado E..( 2013;). Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol3:439 [CrossRef][PubMed]
    [Google Scholar]
  4. Baek E., Kim H., Choi H., Yoon S., Kim J..( 2012;). Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. J Microbiol50:842–848 [CrossRef][PubMed]
    [Google Scholar]
  5. Bok J. W., Keller N. P..( 2004;). LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell3:527–535 [CrossRef][PubMed]
    [Google Scholar]
  6. Boudra H., Morgavi D. P..( 2005;). Mycotoxin risk evaluation in feeds contaminated by Aspergillus fumigatus.. Anim Feed Sci Technol120:113–123 [CrossRef]
    [Google Scholar]
  7. Brosnan B., Coffey A., Arendt E. K., Furey A..( 2012;). Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Anal Bioanal Chem403:2983–2995 [CrossRef][PubMed]
    [Google Scholar]
  8. Crowley S., Mahony J., van Sinderen D..( 2012a;). Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiol (Praha) [CrossRef][PubMed]
    [Google Scholar]
  9. Crowley S., Mahony J., van Sinderen D..( 2012b;). Comparative analysis of two antifungal Lactobacillus plantarum isolates and their application as bioprotectants in refrigerated foods. J Appl Microbiol113:1417–1427 [CrossRef][PubMed]
    [Google Scholar]
  10. da Silva Ferreira M. E., Colombo A. L., Paulsen I., Ren Q., Wortman J., Huang J., Goldman M. H., Goldman G. H..( 2005;). The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus.. Med Mycol43:s1313–319 [CrossRef]
    [Google Scholar]
  11. da Silva Ferreira M. E., Malavazi I., Savoldi M., Brakhage A. A., Goldman M. H. S., Kim H. S., Nierman W. C., Goldman G. H..( 2006;). Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet50:32–44 [CrossRef][PubMed]
    [Google Scholar]
  12. Dagenais T. R., Keller N. P..( 2009;). Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev22:447–465 [CrossRef][PubMed]
    [Google Scholar]
  13. Dal Bello F., Clarke C. I., Ryan L. A. M., Ulmer H., Schober T. J., Ström K., Sjögren J., van Sinderen D., Schnürer J., Arendt E. K..( 2007;). Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci45:309–318 [CrossRef]
    [Google Scholar]
  14. Davidson P. M., Taylor T. M..( 2007;). Chemical preservatives and natural antimicrobial compounds. Food Microbiology: Fundamentals and Frontiers713–745 Doyle M. P., Beuchat L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Delavenne E., Mounier J., Déniel F., Barbier G., Le Blay G..( 2012;). Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int J Food Microbiol155:185–190 [CrossRef][PubMed]
    [Google Scholar]
  16. Gautam P., Shankar J., Madan T., Sirdeshmukh R., Sundaram C. S., Gade W. N., Basir S. F., Sarma P. U..( 2008;). Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother52:4220–4227 [CrossRef][PubMed]
    [Google Scholar]
  17. Gautam P., Upadhyay S. K., Hassan W., Madan T., Sirdeshmukh R., Sundaram C. S., Gade W. N., Basir S. F., Singh Y., Sarma P. U..( 2011;). Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin. Mycopathologia172:331–346 [CrossRef][PubMed]
    [Google Scholar]
  18. Gerez C. L., Torres M. J., Font de Valdez G., Rollán G..( 2013;). Control of spoilage fungi by lactic acid bacteria. Biol Control64:231–237 [CrossRef]
    [Google Scholar]
  19. Guo J., Mauch A., Galle S., Murphy P., Arendt E. K., Coffey A..( 2011;). Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri.. J Appl Microbiol111:474–483 [CrossRef][PubMed]
    [Google Scholar]
  20. Köhler G. A., Assefa S., Reid G..( 2012;). Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans.. Infect Dis Obstet Gynecol2012:636474 [CrossRef][PubMed]
    [Google Scholar]
  21. Lavermicocca P., Valerio F., Evidente A., Lazzaroni S., Corsetti A., Gobbetti M..( 2000;). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol66:4084–4090 [CrossRef][PubMed]
    [Google Scholar]
  22. Lavermicocca P., Valerio F., Visconti A..( 2003;). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol69:634–640 [CrossRef][PubMed]
    [Google Scholar]
  23. Legan J. D..( 1993;). Mould spoilage of bread: the problem and some solutions. Int Biodeterior Biodegradation32:33–53 [CrossRef]
    [Google Scholar]
  24. Liu T. T., Lee R. E., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D..( 2005;). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans.. Antimicrob Agents Chemother49:2226–2236 [CrossRef][PubMed]
    [Google Scholar]
  25. Lupetti A., Danesi R., Campa M., Del Tacca M., Kelly S..( 2002;). Molecular basis of resistance to azole antifungals. Trends Mol Med8:76–81 [CrossRef][PubMed]
    [Google Scholar]
  26. Magnusson J., Ström K., Roos S., Sjögren J., Schnürer J..( 2003;). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett219:129–135 [CrossRef][PubMed]
    [Google Scholar]
  27. Mandal V., Sen S. K., Mandal N. C..( 2013;). Production and partial characterisation of an inducer-dependent novel antifungal compound(s) by Pediococcus acidilactici LAB 5. J Sci Food Agric93:2445–2453 [CrossRef][PubMed]
    [Google Scholar]
  28. Mauch A., Dal Bello F., Coffey A., Arendt E. K..( 2010;). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol141:116–121 [CrossRef][PubMed]
    [Google Scholar]
  29. Melo dos Santos V. M., Dorner J. W., Carreira F..( 2003;). Isolation and toxigenicity of Aspergillus fumigatus from moldy silage. Mycopathologia156:133–138 [CrossRef][PubMed]
    [Google Scholar]
  30. Mukhtar M. D., Bukar A., Abdulkadir R. M..( 2010;). Isolation of fungal contaminants associated with post–harvest stored grains in Dawanau market, Kano, Nigeria. Adv Environ Biol4:64–67
    [Google Scholar]
  31. Ndagano D., Lamoureux T., Dortu C., Vandermoten S., Thonart P..( 2011;). Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci76:M305–M311 [CrossRef][PubMed]
    [Google Scholar]
  32. Perrin R. M., Fedorova N. D., Bok J. W., Cramer R. A., Wortman J. R., Kim H. S., Nierman W. C., Keller N. P..( 2007;). Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog3:e50 [CrossRef][PubMed]
    [Google Scholar]
  33. Perrone G., Susca A., Cozzi G., Ehrlich K., Varga J., Frisvad J. C., Meijer M., Noonim P., Mahakarnchanakul W., Samson R. A..( 2007;). Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol59:53–66 [CrossRef][PubMed]
    [Google Scholar]
  34. Pitt J. I., Hocking A. D..( 1999;). Fungi and Food Spoilage, 2nd edn. Gaithersburg, MD: Aspen Publications;
    [Google Scholar]
  35. Priebe S., Linde J., Albrecht D., Guthke R., Brakhage A. A..( 2011;). FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol48:353–358 [CrossRef][PubMed]
    [Google Scholar]
  36. Ryan L. A., Dal Bello F., Arendt E. K..( 2008;). The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol125:274–278 [CrossRef][PubMed]
    [Google Scholar]
  37. Sjögren J., Magnusson J., Broberg A., Schnürer J., Kenne L..( 2003;). Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol69:7554–7557 [CrossRef][PubMed]
    [Google Scholar]
  38. Storm I. M., Kristensen N. B., Raun B. M., Smedsgaard J., Thrane U..( 2010;). Dynamics in the microbiology of maize silage during whole-season storage. J Appl Microbiol109:1017–1026 [CrossRef][PubMed]
    [Google Scholar]
  39. Ström K., Sjögren J., Broberg A., Schnürer J..( 2002;). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol68:4322–4327 [CrossRef][PubMed]
    [Google Scholar]
  40. Ström K., Schnürer J., Melin P..( 2005;). Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol Lett246:119–124 [CrossRef][PubMed]
    [Google Scholar]
  41. Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J. A. M..( 2007;). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res35:Web ServerW71-4 [CrossRef][PubMed]
    [Google Scholar]
  42. Valerio F., Favilla M., De Bellis P., Sisto A., de Candia S., Lavermicocca P..( 2009;). Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst Appl Microbiol32:438–448 [CrossRef][PubMed]
    [Google Scholar]
  43. Yang E. J., Chang H. C..( 2010;). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol139:56–63 [CrossRef][PubMed]
    [Google Scholar]
  44. Yang E. J., Kim Y. S., Chang H. C..( 2011;). Purification and characterization of antifungal δ-dodecalactone from Lactobacillus plantarum AF1 isolated from kimchi. J Food Prot74:651–657 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068742-0
Loading
/content/journal/micro/10.1099/mic.0.068742-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error