1887

Abstract

A group of non-ribosomally produced antimicrobial peptides, the tyrocidines from the tyrothricin complex, have potential as antimicrobial agents in both medicine and industry. Previous work by our group illustrated that the more polar tyrocidines rich in Trp residues in their structure were more active toward Gram-positive bacteria, while the more non-polar tyrocidines rich in Phe residues had greater activity toward , one of the major causative pathogens of malaria in humans. Our group also found that the tyrocidines have pronounced antifungal activity, dictated by the primary sequence of the tyrocidine. By simply manipulating the Phe or Trp concentration in the culture medium of the tyrothricin producer, ATCC 10068, we were able to modulate the production of subsets of tyrocidines, thereby tailoring the tyrothricin complex to target specific pathogens. We optimized the tailored tyrothricin production using a novel, small-scale, high-throughput deep 96-well plate culturing method followed by analyses of the peptide mixtures using ultra-performance liquid chromatography linked to mass spectrometry. We were able to gradually shift the production profile of the tyrocidines and analogues, as well as the gramicidins between two extremes in terms of peptide subsets and peptide hydrophobicity. This study demonstrated that tyrothricin peptide subsets with targeted activity can be efficiently produced by simple manipulation of the aromatic amino acid profile of the culture medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068734-0
2013-10-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2200.html?itemId=/content/journal/micro/10.1099/mic.0.068734-0&mimeType=html&fmt=ahah

References

  1. Appleby J. C., Knowles E., Pearson J., White T.. ( 1947a;). A preliminary study of the formation, assay and stability of tyrothricin. J Gen Microbiol1:137–144 [CrossRef][PubMed]
    [Google Scholar]
  2. Appleby J. C., Knowles E., Mcallister R., Pearson J., White T.. ( 1947b;). The production of tyrothricin by submerged culture of Bacillus brevis in synthetic media. J Gen Microbiol1:145–157 [CrossRef][PubMed]
    [Google Scholar]
  3. Aranda F. J., de Kruijff B.. ( 1988;). Interrelationships between tyrocidine and gramicidin A′ in their interaction with phospholipids in model membranes. Biochim Biophys Acta937:195–203 [CrossRef][PubMed]
    [Google Scholar]
  4. Arima K., Kakinuma A., Tamura G.. ( 1968;). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun31:488–494 [CrossRef][PubMed]
    [Google Scholar]
  5. Baron A. L.. ( 1949;). Preparation of tyrothricin.
    [Google Scholar]
  6. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L.. ( 1984;). Rapid analysis of amino acids using pre-column derivatization. J Chromatogr A336:93–104[PubMed][CrossRef]
    [Google Scholar]
  7. Bradshaw J. P.. ( 2003;). Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs17:233–240 [CrossRef][PubMed]
    [Google Scholar]
  8. Brown E. D., Wright G. D.. ( 2005;). New targets and screening approaches in antimicrobial drug discovery. Chem Rev105:759–774 [CrossRef][PubMed]
    [Google Scholar]
  9. Brul S., Coote P.. ( 1999;). Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol50:1–17 [CrossRef][PubMed]
    [Google Scholar]
  10. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L.. ( 2001;). Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol71:1–20 [CrossRef][PubMed]
    [Google Scholar]
  11. Cooper D. G., Macdonald C. R., Duff S. J., Kosaric N.. ( 1981;). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol42:408–412[PubMed]
    [Google Scholar]
  12. De Bolle M. F., Osborn R. W., Goderis I. J., Noe L., Acland D., Hart C. A., Torrekens S., Van Leuven F., Broekaert W. F.. ( 1996;). Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol31:993–1008 [CrossRef][PubMed]
    [Google Scholar]
  13. Demain A. L., Matteo C. C.. ( 1976;). Phenylalanine stimulation of gramicidin S formation. Antimicrob Agents Chemother9:1000–1003 [CrossRef][PubMed]
    [Google Scholar]
  14. Desai J. D., Banat I. M.. ( 1997;). Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev61:47–64[PubMed]
    [Google Scholar]
  15. Drouin C. M., Cooper D. G.. ( 1992;). Biosurfactants and aqueous two-phase fermentation. Biotechnol Bioeng40:86–90 [CrossRef][PubMed]
    [Google Scholar]
  16. du Toit E. A., Rautenbach M.. ( 2000;). A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J Microbiol Methods42:159–165 [CrossRef][PubMed]
    [Google Scholar]
  17. Dubos R. J.. ( 1939;). Studies on a bactericidal agent extracted from a soil bacillus: I. preparation of the agent. Its activity in vitro. J Exp Med70:1–10 [CrossRef][PubMed]
    [Google Scholar]
  18. Dubos R. J., Cattaneo C.. ( 1939;). Studies on a bactericidal agent extracted from a soil bacillus: III. Preparation and activity of a protein-free fraction. J Exp Med70:249–256 [CrossRef][PubMed]
    [Google Scholar]
  19. Dubos R. J., Hotchkiss R. D.. ( 1941;). The production of bactericidal substances by aerobic sporulating bacilli. J Exp Med73:629–640 [CrossRef][PubMed]
    [Google Scholar]
  20. François I. E. J. A., De Bolle M. F. C., Dwyer G., Goderis I. J. W. M., Woutors P. F. J., Verhaert P. D., Proost P., Schaaper W. M. M., Cammue B. P. A., Broekaert W. F.. ( 2002;). Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol128:1346–1358 [CrossRef][PubMed]
    [Google Scholar]
  21. Gong G., Zheng Z., Chen H., Yuan C., Wang P., Yao L., Yu Z.. ( 2009;). Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol Biotechnol47:27–31
    [Google Scholar]
  22. Gordon Y. J., Romanowski E. G., McDermott A. M.. ( 2005;). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res30:505–515 [CrossRef][PubMed]
    [Google Scholar]
  23. Gruenewald S., Mootz H. D., Stehmeier P., Stachelhaus T.. ( 2004;). In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli . Appl Environ Microbiol70:3282–3291 [CrossRef][PubMed]
    [Google Scholar]
  24. Hancock R. E. W., Lehrer R.. ( 1998;). Cationic peptides: a new source of antibiotics. Trends Biotechnol16:82–88 [CrossRef][PubMed]
    [Google Scholar]
  25. Hancock R. E. W., Sahl H. G.. ( 2006;). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol24:1551–1557 [CrossRef][PubMed]
    [Google Scholar]
  26. Hiraoka H., Asaka O., Ano T., Shoda M.. ( 1992;). Characterization of Bacillus subtilis RB14, coproducer of peptide antibiotics iturin A and surfactin. J Gen Appl Microbiol38:635–640 [CrossRef]
    [Google Scholar]
  27. Hotchkiss R. D., Dubos R. J.. ( 1941;). The isolation of bactericidal substances from cultures of Bacillus brevis . J Biol Chem141:155
    [Google Scholar]
  28. Huang X., Suo J., Cui Y.. ( 2011;). Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis8:439–443 [CrossRef][PubMed]
    [Google Scholar]
  29. Javadpour M. M., Juban M. M., Lo W. C., Bishop S. M., Alberty J. B., Cowell S. M., Becker C. L., McLaughlin M. L.. ( 1996;). De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem39:3107–3113 [CrossRef][PubMed]
    [Google Scholar]
  30. Kessler N., Schuhmann H., Morneweg S., Linne U., Marahiel M. A.. ( 2004;). The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem279:7413–7419 [CrossRef][PubMed]
    [Google Scholar]
  31. Keymanesh K., Soltani S., Sardari S.. ( 2009;). Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol25:933–944 [CrossRef]
    [Google Scholar]
  32. King T. P., Craig L. C.. ( 1955a;). The chemistry of tyrocidine. IV. Purification and characterization of tyrocidine B. J Am Chem Soc77:6624–6627 [CrossRef]
    [Google Scholar]
  33. King T. P., Craig L. C.. ( 1955b;). The chemistry of tyrocidine. V. The amino acid sequence of tyrocidine B. J Am Chem Soc77:6627–6631 [CrossRef]
    [Google Scholar]
  34. Lee J. H., Kim J. H., Hwang S. W., Lee W. J., Yoon H. K., Lee H. S., Hong S. S.. ( 2000;). High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun277:575–580 [CrossRef][PubMed]
    [Google Scholar]
  35. Lehrer R. I., Rosenman M., Harwig S. S. S. L., Jackson R., Eisenhauer P.. ( 1991;). Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods137:167–173 [CrossRef][PubMed]
    [Google Scholar]
  36. Lewis J., Dimick K. P., Feustel I.. ( 1945;). Production of tyrothricin in cultures of Bacillus brevis. . Ind Eng Chem Res37:996–1004 [CrossRef]
    [Google Scholar]
  37. Li Y.. ( 2011;). Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif80:260–267 [CrossRef][PubMed]
    [Google Scholar]
  38. Liu Q., Yuan H., Wang J., Gong G., Zhou W., Fan Y., Wang L., Yao J., Yu Z.. ( 2006;). A mutant of Bacillus subtilis with high-producing surfactin by ion beam implantation. Plasma Sci Technol8:491–496 [CrossRef]
    [Google Scholar]
  39. Mach B., Tatum E. L.. ( 1964;). Environmental control of amino acid substitutions in the biosynthesis of the antibiotic polypeptide tyrocidine. Proc Natl Acad Sci U S A52:876–884 [CrossRef][PubMed]
    [Google Scholar]
  40. Marahiel M. A., Zuber P., Czekay G., Losick R.. ( 1987;). Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis . J Bacteriol169:2215–2222[PubMed]
    [Google Scholar]
  41. Marr A. K., Gooderham W. J., Hancock R. E.. ( 2006;). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol6:468–472 [CrossRef][PubMed]
    [Google Scholar]
  42. Matsuzaki K., Harada M., Funakoshi S., Fujii N., Miyajima K.. ( 1991;). Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta1063:162–170 [CrossRef][PubMed]
    [Google Scholar]
  43. Matsuzaki K., Sugishita K., Fujii N., Miyajima K.. ( 1995;). Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry34:3423–3429 [CrossRef][PubMed]
    [Google Scholar]
  44. Moon W. J., Hwang D. K., Park E. J., Kim Y. M., Chae Y. K.. ( 2007;). Recombinant expression, isotope labeling, refolding, and purification of an antimicrobial peptide, piscidin. Protein Expr Purif51:141–146 [CrossRef][PubMed]
    [Google Scholar]
  45. Mootz H. D., Marahiel M. A.. ( 1997;). The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol179:6843–6850[PubMed]
    [Google Scholar]
  46. Mulligan C. N., Chow T. Y.-K., Gibbs B. F.. ( 1989;). Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl Microbiol Biotechnol31:486–489 [CrossRef]
    [Google Scholar]
  47. Ohno A., Ano T., Shoda M.. ( 1992;). Production of a lipopeptide antibiotic surfactin with recombinant Bacillus subtilis . Biotechnol Lett14:1165–1168 [CrossRef]
    [Google Scholar]
  48. Ohno A., Ano T., Shoda M.. ( 1995;). Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng47:209–214 [CrossRef][PubMed]
    [Google Scholar]
  49. Paladini A., Craig L. C.. ( 1954;). The chemistry of tyrocidine. III. The structure of tyrocidine A. J Am Chem Soc76:688–692 [CrossRef]
    [Google Scholar]
  50. Qin C., Zhong X., Bu X., Ng N. L. J., Guo Z.. ( 2003;). Dissociation of antibacterial and hemolytic activities of an amphipathic peptide antibiotic. J Med Chem46:4830–4833 [CrossRef][PubMed]
    [Google Scholar]
  51. Rammelkamp C. H., Weinstein L.. ( 1942;). Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis71:166–173 [CrossRef]
    [Google Scholar]
  52. Rankin L.. ( 1944;). The use of tyrothricin in the treatment of ulcers of the skin. Am J Surg65:391–392 [CrossRef]
    [Google Scholar]
  53. Rautenbach M., Vlok N. M., Stander M., Hoppe H. C.. ( 2007;). Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis . Biochim Biophys Acta1768:1488–1497 [CrossRef][PubMed]
    [Google Scholar]
  54. Rautenbach M., Troskie A. M., De Beer A., Vosloo J. A.. ( 2013;). Antimicrobial peptide formulations for plants.
    [Google Scholar]
  55. Robinson H. J., Molitor H.. ( 1942;). Some toxicological and pharmacological properties of gramicidin, tyrocidine and tyrothricin. J Pharmacol Exp Ther74:75–82
    [Google Scholar]
  56. Ruttenberg M. A., Mach B.. ( 1966;). Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry5:2864–2869 [CrossRef][PubMed]
    [Google Scholar]
  57. Ruttenberg M. A., King T. P., Craig L. C.. ( 1965;). The chemistry of tyrocidine. VI. The amino acid sequence of tyrocidine C. Biochemistry4:11–18 [CrossRef][PubMed]
    [Google Scholar]
  58. Sandrin C., Peypoux F., Michel G.. ( 1990;). Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis . Biotechnol Appl Biochem12:370–375[PubMed]
    [Google Scholar]
  59. Sheppard J. D., Mulligan C. N.. ( 1987;). The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl Microbiol Biotechnol27:110–116 [CrossRef]
    [Google Scholar]
  60. Spathelf B. M.. ( 2010;). Qualitative structure-activity relationships of the major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. PhD thesis, Stellenbosch University, Department of Biochemistry; Stellenbosch, South Africa:
  61. Spathelf B. M., Rautenbach M.. ( 2009;). Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus . Bioorg Med Chem17:5541–5548 [CrossRef][PubMed]
    [Google Scholar]
  62. Stokes J. L., Woodward C. R.. ( 1943;). Formation of tyrothricin in submerged cultures of Bacillus brevis . J Bacteriol46:83–88[PubMed]
    [Google Scholar]
  63. Tang X. J., Thibault P., Boyd R. K.. ( 1992;). Characterization of the tyrocidine and gramicidine fractions of the tyrothricin complex from Bacillus brevis using liquid chromatography and mass spectrometry. Int J Mass Spectrom Ion Process122:153–179 [CrossRef]
    [Google Scholar]
  64. Vandamme E. J., Demain A. L.. ( 1976;). Nutrition of Bacillus brevis ATCC 9999, the producer of gramicidin S. Antimicrob Agents Chemother10:265–273 [CrossRef][PubMed]
    [Google Scholar]
  65. Yarus S., Rosen J. M., Cole A. M., Diamond G.. ( 1996;). Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc Natl Acad Sci U S A93:14118–14121 [CrossRef][PubMed]
    [Google Scholar]
  66. Yeaman M. R., Yount N. Y.. ( 2003;). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev55:27–55 [CrossRef][PubMed]
    [Google Scholar]
  67. Yeh M. S., Wei Y. H., Chang J. S.. ( 2005;). Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog21:1329–1334 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068734-0
Loading
/content/journal/micro/10.1099/mic.0.068734-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error