1887

Abstract

Recently, we described a novel insertion element, IS, isolated from a permafrost strain of . In this work, we demonstrated that IS is a member of a novel subgroup of the IS family of insertion sequences (ISs) that was not identified and characterized previously. IS elements of this subgroup termed the IS subgroup are broadly distributed among different taxa of Eubacteria, including , , , , and Cyanobacteria. While displaying characteristic features of the IS-family elements, IS subgroup elements exhibit some unusual features. In particular, most of them have longer terminal repeats with unconventional ends and frameshifting box with an atypical organization, and, unlike many other IS-family elements, do not exhibit any distinct IS specificity. We studied the transposition and mutagenic properties of a representative member of this subgroup, IS and showed that in contrast to the original host, in a heterologous host, K-12, it is able to translocate with extremely high efficiency into the chromosome, either by itself or as a part of a composite transposon containing two IS copies. The majority of transposants carry multiple chromosomal copies (up to 12) of IS. It was discovered that IS is characterized by a marked mutagenic activity in : its chromosomal insertions generate various types of mutations, including auxotrophic, pleiotropic and rifampicin-resistance mutations. The distribution of IS elements of the novel subgroup among different bacteria, their role in the formation of composite transposons and the horizontal transfer of genes are examined and discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068676-0
2013-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1900.html?itemId=/content/journal/micro/10.1099/mic.0.068676-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Ayala-del-Río H. L., Chain P. S., Grzymski J. J., Ponder M. A., Ivanova N., Bergholz P. W., Di Bartolo G., Hauser L., Land M.. & other authors ( 2010;). The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. . Appl Environ Microbiol 76:, 2304–2312. [CrossRef][PubMed]
    [Google Scholar]
  3. Baranov P. V., Gesteland R. F., Atkins J. F.. ( 2002;). Recoding: translational bifurcations in gene expression. . Gene 286:, 187–201. [CrossRef][PubMed]
    [Google Scholar]
  4. Bisercić M., Ochman H.. ( 1993;). Natural populations of Escherichia coli and Salmonella typhimurium harbor the same classes of insertion sequences. . Genetics 133:, 449–454.[PubMed]
    [Google Scholar]
  5. Bonnin R. A., Poirel L., Nordmann P.. ( 2012;). A novel and hybrid composite transposon at the origin of acquisition of bla(RTG-5) in Acinetobacter baumannii.. Int J Antimicrob Agents 40:, 257–259. [CrossRef][PubMed]
    [Google Scholar]
  6. Clément J. M., Wilde C., Bachellier S., Lambert P., Hofnung M.. ( 1999;). IS1397 is active for transposition into the chromosome of Escherichia coli K-12 and inserts specifically into palindromic units of bacterial interspersed mosaic elements. . J Bacteriol 181:, 6929–6936.[PubMed]
    [Google Scholar]
  7. Craig N. L.. ( 1997;). Target site selection in transposition. . Annu Rev Biochem 66:, 437–474. [CrossRef][PubMed]
    [Google Scholar]
  8. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  9. Hagman K. E., Pan W., Spratt B. G., Balthazar J. T., Judd R. C., Shafer W. M.. ( 1995;). Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. . Microbiology 141:, 611–622. [CrossRef][PubMed]
    [Google Scholar]
  10. Hu M., Deonier R. C.. ( 1981;). Comparison of IS1, IS2 and IS3 copy number in Escherichia coli strains K-12, B and C. . Gene 16:, 161–170. [CrossRef][PubMed]
    [Google Scholar]
  11. Hui J., Gordon N., Kajioka R.. ( 1977;). Permeability barrier to rifampin in mycobacteria. . Antimicrob Agents Chemother 11:, 773–779. [CrossRef][PubMed]
    [Google Scholar]
  12. Kallastu A., Hõrak R., Kivisaar M.. ( 1998;). Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida.. J Bacteriol 180:, 5306–5312.[PubMed]
    [Google Scholar]
  13. Kholodii G., Yurieva O., Mindlin S., Gorlenko Z., Rybochkin V., Nikiforov V.. ( 2000;). Tn5044, a novel Tn3 family transposon coding for temperature-sensitive mercury resistance. . Res Microbiol 151:, 291–302. [CrossRef][PubMed]
    [Google Scholar]
  14. Lawrence J. G., Ochman H., Hartl D. L.. ( 1992;). The evolution of insertion sequences within enteric bacteria. . Genetics 131:, 9–20.[PubMed]
    [Google Scholar]
  15. Mahillon J., Chandler M.. ( 1998;). Insertion sequences. . Microbiol Mol Biol Rev 62:, 725–774.[PubMed]
    [Google Scholar]
  16. Mindlin S., Kholodii G., Gorlenko Zh., Minakhina S., Minakhin L., Kalyaeva E., Kopteva A., Petrova M., Yurieva O., Nikiforov V.. ( 2001;). Mercury resistance transposons of gram-negative environmental bacteria and their classification. . Res Microbiol 152:, 811–822. [CrossRef][PubMed]
    [Google Scholar]
  17. Mindlin S., Minakhin L., Petrova M., Kholodii G., Minakhina S., Gorlenko Z., Nikiforov V.. ( 2005;). Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. . Res Microbiol 156:, 994–1004. [CrossRef][PubMed]
    [Google Scholar]
  18. Mindlin S. Z., Soina V. S., Ptrova M. A., Gorlenko Zh. M.. ( 2008;). [Isolation of antibiotic resistance bacterial strains from East Siberia permafrost sediments]. . Genetika 44:, 36–44 (in Russian).[PubMed]
    [Google Scholar]
  19. Nagy Z., Chandler M.. ( 2004;). Regulation of transposition in bacteria. . Res Microbiol 155:, 387–398. [CrossRef][PubMed]
    [Google Scholar]
  20. Nyman K., Nakamura K., Ohtsubo H., Ohtsubo E.. ( 1981;). Distribution of the insertion sequence IS1 in gram-negative bacteria. . Nature 289:, 609–612 (London). [CrossRef][PubMed]
    [Google Scholar]
  21. Ovchinnikov Y. A., Monastyrskaya G. S., Guriev S. O., Kalinina N. F., Sverdlov E. D., Gragerov A. I., Bass I. A., Kiver I. F., Moiseyeva E. P.. & other authors ( 1983;). RNA polymerase rifampicin resistance mutations in Escherichia coli: sequence changes and dominance. . Mol Gen Genet 190:, 344–348. [CrossRef][PubMed]
    [Google Scholar]
  22. Petrova M. A., Mindlin S. Z., Gorlenko Zh. M., Kaliaeva E. S., Soina V. S., Bogdanova E. S.. ( 2002;). [Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants]. . Genetika 38:, 1569–1574 (in Russian).[PubMed]
    [Google Scholar]
  23. Petrova M. A., Gorlenko Zh. M., Soina V. S., Mindlin S. Z.. ( 2008;). [Association of the strA-strB genes with plasmids and transposons in the present-day bacteria and in bacterial strains from permafrost]. . Genetika 44:, 1281–1286 (in Russian).[PubMed]
    [Google Scholar]
  24. Petrova M., Gorlenko Z., Mindlin S.. ( 2009;). Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychrophilus permafrost strain. . FEMS Microbiol Lett 296:, 190–197. [CrossRef][PubMed]
    [Google Scholar]
  25. Petrova M. A., Gorlenko Zh. M., Shcherbatova N. A., Mindlin S. M.. ( 2012;). ISPpy1, a novel mobile element of Psychrobacter maritimus permafrost strain: translocations in Escherichia.coli K-12 and formation of composite transposons. . Genetika 48:, 324–332 (in Russian).[PubMed]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  27. Sawyer S. A., Dykhuizen D. E., DuBose R. F., Green L., Mutangadura-Mhlanga T., Wolczyk D. F., Hartl D. L.. ( 1987;). Distribution and abundance of insertion sequences among natural isolates of Escherichia coli.. Genetics 115:, 51–63.[PubMed]
    [Google Scholar]
  28. Schwartz E., Kröger M., Rak B.. ( 1988;). IS150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. . Nucleic Acids Res 16: (14B), 6789–6801. [CrossRef][PubMed]
    [Google Scholar]
  29. Siddiqi N., Das R., Pathak N., Banerjee S., Ahmed N., Katoch V. M., Hasnain S. E.. ( 2004;). Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump. . Infection 32:, 109–111. [CrossRef][PubMed]
    [Google Scholar]
  30. Siguier P., Filée J., Chandler M.. ( 2006;). Insertion sequences in prokaryotic genomes. . Curr Opin Microbiol 9:, 526–531. [CrossRef][PubMed]
    [Google Scholar]
  31. Thomson V. J., Bhattacharjee M. K., Fine D. H., Derbyshire K. M., Figurski D. H.. ( 1999;). Direct selection of IS903 transposon insertions by use of a broad-host-range vector: isolation of catalase-deficient mutants of Actinobacillus actinomycetemcomitans.. J Bacteriol 181:, 7298–7307.[PubMed]
    [Google Scholar]
  32. Tobes R., Pareja E.. ( 2006;). Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. . BMC Genomics 7:, 62. [CrossRef][PubMed]
    [Google Scholar]
  33. Touchon M., Rocha E. P.. ( 2007;). Causes of insertion sequences abundance in prokaryotic genomes. . Mol Biol Evol 24:, 969–981. [CrossRef][PubMed]
    [Google Scholar]
  34. Tupin A., Gualtieri M., Roquet-Banères F., Morichaud Z., Brodolin K., Leonetti J. P.. ( 2010;). Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. . Int J Antimicrob Agents 35:, 519–523. [CrossRef][PubMed]
    [Google Scholar]
  35. Umeda M., Ohtsubo E.. ( 1991;). Four types of IS1 with differences in nucleotide sequence reside in the Escherichia coli K-12 chromosome. . Gene 98:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  36. Wagner A.. ( 2006;). Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. . Mol Biol Evol 23:, 723–733. [CrossRef][PubMed]
    [Google Scholar]
  37. Welsh E. A., Liberton M., Stöckel J., Loh T., Elvitigala T., Wang C., Wollam A., Fulton R. S., Clifton S. W.. & other authors ( 2008;). The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. . Proc Natl Acad Sci U S A 105:, 15094–15099. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068676-0
Loading
/content/journal/micro/10.1099/mic.0.068676-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error