1887

Abstract

Polyphosphate (poly P) metabolism regulates the stress response in mycobacteria. Here we describe the regulatory architecture of a signal transduction system involving the two-component system (TCS) SenX3–RegX3, the extracytoplasmic function sigma factor sigma E (SigE) and the poly P-synthesizing enzyme polyphosphate kinase 1 (PPK1). The promoter of is activated under phosphate starvation. This is attenuated upon deletion of an imperfect palindrome likely representing a binding site for the response regulator RegX3, a component of the two-component system SenX3–RegX3 that responds to phosphate starvation. Binding of phosphorylated RegX3 to this site was confirmed by electrophoretic mobility shift assay. The activity of the promoter was abrogated upon deletion of a putative SigE binding site. Pull-down of SigE from lysates of phosphate-starved cells with a biotinylated DNA harbouring the SigE binding site confirmed the likely binding of SigE to the promoter. transcription corroborated the involvement of SigE in transcription. Finally, the overexpression of RseA (anti-SigE) attenuated expression under phosphate starvation, supporting the role of SigE in transcription. The regulatory elements identified in transcription in this study, combined with our earlier observation that PPK1 is itself capable of regulating expression via the MprAB TCS, suggest the presence of multiple positive-feedback loops in this signalling circuit. In combination with the sequestering effect of RseA, we hypothesize that this architecture could be linked to bistability in the system that, in turn, could be a key element of persistence in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068452-0
2013-10-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2074.html?itemId=/content/journal/micro/10.1099/mic.0.068452-0&mimeType=html&fmt=ahah

References

  1. Ahn K., Kornberg A.( 1990). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739[PubMed]
    [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A.( 1992). The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem 267:22556–22561[PubMed]
    [Google Scholar]
  3. Aly S., Wagner K., Keller C., Malm S., Malzan A., Brandau S., Bange F. C., Ehlers S.( 2006). Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210:298–305 [View Article][PubMed]
    [Google Scholar]
  4. Balázsi G., Heath A. P., Shi L., Gennaro M. L.( 2008). The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol 4:225 [View Article][PubMed]
    [Google Scholar]
  5. Bretl D. J., Demetriadou C., Zahrt T. C.( 2011). Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.. Microbiol Mol Biol Rev 75:566–582 [View Article][PubMed]
    [Google Scholar]
  6. Chen D., Arkin A. P.( 2012). Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol Syst Biol 8:620 [View Article][PubMed]
    [Google Scholar]
  7. Choi M. Y., Wang Y., Wong L. L. Y., Lu B. T., Chen W. Y., Huang J.-D., Tanner J. A., Watt R. M.( 2012). The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. PLoS ONE 7:e42561 [View Article][PubMed]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.& other authors ( 1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  9. Donà V., Rodrigue S., Dainese E., Palù G., Gaudreau L., Manganelli R., Provvedi R.( 2008). Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor σE in Mycobacterium tuberculosis.. J Bacteriol 190:5963–5971 [View Article][PubMed]
    [Google Scholar]
  10. Fauci A. S.NIAID Tuberculosis Working Group( 2008). Multidrug-resistant and extensively drug-resistant tuberculosis: the National Institute of Allergy and Infectious Diseases Research agenda and recommendations for priority research. J Infect Dis 197:1493–1498 [View Article][PubMed]
    [Google Scholar]
  11. Gengenbacher M., Kaufmann S. H. E.( 2012). Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36:514–532 [View Article][PubMed]
    [Google Scholar]
  12. Glover R. T., Kriakov J., Garforth S. J., Baughn A. D., Jacobs W. R. Jr( 2007). The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis.. J Bacteriol 189:5495–5503 [View Article][PubMed]
    [Google Scholar]
  13. Himpens S., Locht C., Supply P.( 2000). Molecular characterization of the mycobacterial SenX3–RegX3 two-component system: evidence for autoregulation. Microbiology 146:3091–3098[PubMed]
    [Google Scholar]
  14. Hoch J. A.( 2000). Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170 [View Article][PubMed]
    [Google Scholar]
  15. Hoot S. J., Brown R. P., Oliver B. G., White T. C.( 2010). The UPC2 promoter in Candida albicans contains two cis-acting elements that bind directly to Upc2p, resulting in transcriptional autoregulation. Eukaryot Cell 9:1354–1362 [View Article][PubMed]
    [Google Scholar]
  16. Jacques J. F., Rodrigue S., Brzezinski R., Gaudreau L.( 2006). A recombinant Mycobacterium tuberculosis in vitro transcription system. FEMS Microbiol Lett 255:140–147 [View Article][PubMed]
    [Google Scholar]
  17. Kim K. S., Rao N. N., Fraley C. D., Kornberg A.( 2002). Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A 99:7675–7680 [View Article][PubMed]
    [Google Scholar]
  18. Kornberg A., Rao N. N., Ault-Riché D.( 1999). Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125 [View Article][PubMed]
    [Google Scholar]
  19. Kuroda A., Murphy H., Cashel M., Kornberg A.( 1997). Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli.. J Biol Chem 272:21240–21243 [View Article][PubMed]
    [Google Scholar]
  20. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I.( 1999). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis.. Mol Microbiol 31:715–724 [View Article][PubMed]
    [Google Scholar]
  21. Nuermberger E., Bishai W. R., Grosset J. H.( 2004). Latent tuberculosis infection. Semin Respir Crit Care Med 25:317–336 [View Article][PubMed]
    [Google Scholar]
  22. Parish T., Smith D. A., Kendall S., Casali N., Bancroft G. J., Stoker N. G.( 2003a). Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.. Infect Immun 71:1134–1140 [View Article][PubMed]
    [Google Scholar]
  23. Parish T., Smith D. A., Roberts G., Betts J., Stoker N. G.( 2003b). The senX3–regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149:1423–1435 [View Article][PubMed]
    [Google Scholar]
  24. Rao N. N., Kornberg A.( 1996). Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli.. J Bacteriol 178:1394–1400[PubMed]
    [Google Scholar]
  25. Rao N. N., Kornberg A.( 1999). Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog Mol Subcell Biol 23:183–195 [View Article][PubMed]
    [Google Scholar]
  26. Rashid M. H., Rao N. N., Kornberg A.( 2000a). Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol 182:225–227 [View Article][PubMed]
    [Google Scholar]
  27. Rashid M. H., Rumbaugh K., Passador L., Davies D. G., Hamood A. N., Iglewski B. H., Kornberg A.( 2000b). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A 97:9636–9641 [View Article][PubMed]
    [Google Scholar]
  28. Rickman L., Saldanha J. W., Hunt D. M., Hoar D. N., Colston M. J., Millar J. B., Buxton R. S.( 2004). A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 314:259–267 [View Article][PubMed]
    [Google Scholar]
  29. Rifat D., Bishai W. R., Karakousis P. C.( 2009). Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis 200:1126–1135 [View Article][PubMed]
    [Google Scholar]
  30. Roberts G., Vadrevu I. S., Madiraju M. V., Parish T.( 2011). Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis.. PLoS ONE 6:e21090 [View Article][PubMed]
    [Google Scholar]
  31. Singh R., Singh M., Arora G., Kumar S., Tiwari P., Kidwai S.( 2013). Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol 195:2839–2851 [View Article][PubMed]
    [Google Scholar]
  32. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr( 1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.. Mol Microbiol 4:1911–1919 [View Article][PubMed]
    [Google Scholar]
  33. Song T., Song S.-E., Raman S., Anaya M., Husson R. N.( 2008). Critical role of a single position in the−35 element for promoter recognition by Mycobacterium tuberculosis SigE and SigH. J Bacteriol 190:2227–2230 [View Article][PubMed]
    [Google Scholar]
  34. Stock A. M., Robinson V. L., Goudreau P. N.( 2000). Two-component signal transduction. Annu Rev Biochem 69:183–215 [View Article][PubMed]
    [Google Scholar]
  35. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.& other authors ( 1991). New use of BCG for recombinant vaccines. Nature 351:456–460 [View Article][PubMed]
    [Google Scholar]
  36. Sureka K., Dey S., Datta P., Singh A. K., Dasgupta A., Rodrigue S., Basu J., Kundu M.( 2007). Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65:261–276 [View Article][PubMed]
    [Google Scholar]
  37. Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I.( 2008). Positive feedback and noise activate the stringent response regulator Rel in mycobacteria. PLoS ONE 3:e1771 [View Article][PubMed]
    [Google Scholar]
  38. Sureka K., Sanyal S., Basu J., Kundu M.( 2009). Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol Microbiol 74:1187–1197 [View Article][PubMed]
    [Google Scholar]
  39. Thayil S. M., Morrison N., Schechter N., Rubin H., Karakousis P. C.( 2011). The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS ONE 6:e28076 [View Article][PubMed]
    [Google Scholar]
  40. Tiwari A., Balázsi G., Gennaro M. L., Igoshin O. A.( 2010). The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Phys Biol 7:036005 [View Article][PubMed]
    [Google Scholar]
  41. Valdivia R. H., Hromockyj A. E., Monack D., Ramakrishnan L., Falkow S.( 1996). Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173:1 Spec No47–52 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068452-0
Loading
/content/journal/micro/10.1099/mic.0.068452-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error