1887

Abstract

Polyphosphate (poly P) metabolism regulates the stress response in mycobacteria. Here we describe the regulatory architecture of a signal transduction system involving the two-component system (TCS) SenX3–RegX3, the extracytoplasmic function sigma factor sigma E (SigE) and the poly P-synthesizing enzyme polyphosphate kinase 1 (PPK1). The promoter of is activated under phosphate starvation. This is attenuated upon deletion of an imperfect palindrome likely representing a binding site for the response regulator RegX3, a component of the two-component system SenX3–RegX3 that responds to phosphate starvation. Binding of phosphorylated RegX3 to this site was confirmed by electrophoretic mobility shift assay. The activity of the promoter was abrogated upon deletion of a putative SigE binding site. Pull-down of SigE from lysates of phosphate-starved cells with a biotinylated DNA harbouring the SigE binding site confirmed the likely binding of SigE to the promoter. transcription corroborated the involvement of SigE in transcription. Finally, the overexpression of RseA (anti-SigE) attenuated expression under phosphate starvation, supporting the role of SigE in transcription. The regulatory elements identified in transcription in this study, combined with our earlier observation that PPK1 is itself capable of regulating expression via the MprAB TCS, suggest the presence of multiple positive-feedback loops in this signalling circuit. In combination with the sequestering effect of RseA, we hypothesize that this architecture could be linked to bistability in the system that, in turn, could be a key element of persistence in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068452-0
2013-10-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2074.html?itemId=/content/journal/micro/10.1099/mic.0.068452-0&mimeType=html&fmt=ahah

References

  1. Ahn K., Kornberg A..( 1990;). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem265:11734–11739[PubMed]
    [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A..( 1992;). The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem267:22556–22561[PubMed]
    [Google Scholar]
  3. Aly S., Wagner K., Keller C., Malm S., Malzan A., Brandau S., Bange F. C., Ehlers S..( 2006;). Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol210:298–305 [CrossRef][PubMed]
    [Google Scholar]
  4. Balázsi G., Heath A. P., Shi L., Gennaro M. L..( 2008;). The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol4:225 [CrossRef][PubMed]
    [Google Scholar]
  5. Bretl D. J., Demetriadou C., Zahrt T. C..( 2011;). Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.. Microbiol Mol Biol Rev75:566–582 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen D., Arkin A. P..( 2012;). Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol Syst Biol8:620 [CrossRef][PubMed]
    [Google Scholar]
  7. Choi M. Y., Wang Y., Wong L. L. Y., Lu B. T., Chen W. Y., Huang J.-D., Tanner J. A., Watt R. M..( 2012;). The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. PLoS ONE7:e42561 [CrossRef][PubMed]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S..& other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  9. Donà V., Rodrigue S., Dainese E., Palù G., Gaudreau L., Manganelli R., Provvedi R..( 2008;). Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor σE in Mycobacterium tuberculosis.. J Bacteriol190:5963–5971 [CrossRef][PubMed]
    [Google Scholar]
  10. Fauci A. S..NIAID Tuberculosis Working Group( 2008;). Multidrug-resistant and extensively drug-resistant tuberculosis: the National Institute of Allergy and Infectious Diseases Research agenda and recommendations for priority research. J Infect Dis197:1493–1498 [CrossRef][PubMed]
    [Google Scholar]
  11. Gengenbacher M., Kaufmann S. H. E..( 2012;). Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev36:514–532 [CrossRef][PubMed]
    [Google Scholar]
  12. Glover R. T., Kriakov J., Garforth S. J., Baughn A. D., Jacobs W. R. Jr.( 2007;). The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis.. J Bacteriol189:5495–5503 [CrossRef][PubMed]
    [Google Scholar]
  13. Himpens S., Locht C., Supply P..( 2000;). Molecular characterization of the mycobacterial SenX3–RegX3 two-component system: evidence for autoregulation. Microbiology146:3091–3098[PubMed]
    [Google Scholar]
  14. Hoch J. A..( 2000;). Two-component and phosphorelay signal transduction. Curr Opin Microbiol3:165–170 [CrossRef][PubMed]
    [Google Scholar]
  15. Hoot S. J., Brown R. P., Oliver B. G., White T. C..( 2010;). The UPC2 promoter in Candida albicans contains two cis-acting elements that bind directly to Upc2p, resulting in transcriptional autoregulation. Eukaryot Cell9:1354–1362 [CrossRef][PubMed]
    [Google Scholar]
  16. Jacques J. F., Rodrigue S., Brzezinski R., Gaudreau L..( 2006;). A recombinant Mycobacterium tuberculosis in vitro transcription system. FEMS Microbiol Lett255:140–147 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim K. S., Rao N. N., Fraley C. D., Kornberg A..( 2002;). Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A99:7675–7680 [CrossRef][PubMed]
    [Google Scholar]
  18. Kornberg A., Rao N. N., Ault-Riché D..( 1999;). Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem68:89–125 [CrossRef][PubMed]
    [Google Scholar]
  19. Kuroda A., Murphy H., Cashel M., Kornberg A..( 1997;). Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli.. J Biol Chem272:21240–21243 [CrossRef][PubMed]
    [Google Scholar]
  20. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I..( 1999;). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis.. Mol Microbiol31:715–724 [CrossRef][PubMed]
    [Google Scholar]
  21. Nuermberger E., Bishai W. R., Grosset J. H..( 2004;). Latent tuberculosis infection. Semin Respir Crit Care Med25:317–336 [CrossRef][PubMed]
    [Google Scholar]
  22. Parish T., Smith D. A., Kendall S., Casali N., Bancroft G. J., Stoker N. G..( 2003a;). Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.. Infect Immun71:1134–1140 [CrossRef][PubMed]
    [Google Scholar]
  23. Parish T., Smith D. A., Roberts G., Betts J., Stoker N. G..( 2003b;). The senX3–regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology149:1423–1435 [CrossRef][PubMed]
    [Google Scholar]
  24. Rao N. N., Kornberg A..( 1996;). Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli.. J Bacteriol178:1394–1400[PubMed]
    [Google Scholar]
  25. Rao N. N., Kornberg A..( 1999;). Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog Mol Subcell Biol23:183–195 [CrossRef][PubMed]
    [Google Scholar]
  26. Rashid M. H., Rao N. N., Kornberg A..( 2000a;). Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol182:225–227 [CrossRef][PubMed]
    [Google Scholar]
  27. Rashid M. H., Rumbaugh K., Passador L., Davies D. G., Hamood A. N., Iglewski B. H., Kornberg A..( 2000b;). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A97:9636–9641 [CrossRef][PubMed]
    [Google Scholar]
  28. Rickman L., Saldanha J. W., Hunt D. M., Hoar D. N., Colston M. J., Millar J. B., Buxton R. S..( 2004;). A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun314:259–267 [CrossRef][PubMed]
    [Google Scholar]
  29. Rifat D., Bishai W. R., Karakousis P. C..( 2009;). Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis200:1126–1135 [CrossRef][PubMed]
    [Google Scholar]
  30. Roberts G., Vadrevu I. S., Madiraju M. V., Parish T..( 2011;). Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis.. PLoS ONE6:e21090 [CrossRef][PubMed]
    [Google Scholar]
  31. Singh R., Singh M., Arora G., Kumar S., Tiwari P., Kidwai S..( 2013;). Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol195:2839–2851 [CrossRef][PubMed]
    [Google Scholar]
  32. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr.( 1990;). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.. Mol Microbiol4:1911–1919 [CrossRef][PubMed]
    [Google Scholar]
  33. Song T., Song S.-E., Raman S., Anaya M., Husson R. N..( 2008;). Critical role of a single position in the−35 element for promoter recognition by Mycobacterium tuberculosis SigE and SigH. J Bacteriol190:2227–2230 [CrossRef][PubMed]
    [Google Scholar]
  34. Stock A. M., Robinson V. L., Goudreau P. N..( 2000;). Two-component signal transduction. Annu Rev Biochem69:183–215 [CrossRef][PubMed]
    [Google Scholar]
  35. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H..& other authors ( 1991;). New use of BCG for recombinant vaccines. Nature351:456–460 [CrossRef][PubMed]
    [Google Scholar]
  36. Sureka K., Dey S., Datta P., Singh A. K., Dasgupta A., Rodrigue S., Basu J., Kundu M..( 2007;). Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol65:261–276 [CrossRef][PubMed]
    [Google Scholar]
  37. Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I..( 2008;). Positive feedback and noise activate the stringent response regulator Rel in mycobacteria. PLoS ONE3:e1771 [CrossRef][PubMed]
    [Google Scholar]
  38. Sureka K., Sanyal S., Basu J., Kundu M..( 2009;). Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol Microbiol74:1187–1197 [CrossRef][PubMed]
    [Google Scholar]
  39. Thayil S. M., Morrison N., Schechter N., Rubin H., Karakousis P. C..( 2011;). The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS ONE6:e28076 [CrossRef][PubMed]
    [Google Scholar]
  40. Tiwari A., Balázsi G., Gennaro M. L., Igoshin O. A..( 2010;). The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Phys Biol7:036005 [CrossRef][PubMed]
    [Google Scholar]
  41. Valdivia R. H., Hromockyj A. E., Monack D., Ramakrishnan L., Falkow S..( 1996;). Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene173:1 Spec No47–52 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068452-0
Loading
/content/journal/micro/10.1099/mic.0.068452-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error