1887

Abstract

Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the , and . The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host , and one established itself in but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068387-0
2013-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2303.html?itemId=/content/journal/micro/10.1099/mic.0.068387-0&mimeType=html&fmt=ahah

References

  1. Allen H. K., Donato J., Wang H. H., Cloud-Hansen K. A., Davies J., Handelsman J.. ( 2010;). Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol8:251–259 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  3. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:2006.0008 [CrossRef][PubMed]
    [Google Scholar]
  4. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N.. ( 1981;). Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . Gene16:237–247 [CrossRef][PubMed]
    [Google Scholar]
  5. Bahl M. I., Hansen L. H., Goesmann A., Sørensen S. J.. ( 2007;). The multiple antibiotic resistance IncP-1 plasmid pKJK5 isolated from a soil environment is phylogenetically divergent from members of the previously established α, β and δ sub-groups. Plasmid58:31–43 [CrossRef][PubMed]
    [Google Scholar]
  6. Bahl M. I., Burmølle M., Meisner A., Hansen L. H., Sørensen S. J.. ( 2009;). All IncP-1 plasmid subgroups, including the novel epsilon subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid62:134–139 [CrossRef][PubMed]
    [Google Scholar]
  7. Binh C. T., Heuer H., Kaupenjohann M., Smalla K.. ( 2008;). Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol66:25–37 [CrossRef][PubMed]
    [Google Scholar]
  8. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  9. Brown C. J., Sen D., Yano H., Bauer M. L., Rogers L. M., Van der Auwera G. A., Top E. M.. ( 2013;). Diverse broad-host-range plasmids from freshwater carry few accessory genes. Appl Environ Microbiol. [CrossRef][PubMed]
    [Google Scholar]
  10. Caspi R., Helinski D. R., Pacek M., Konieczny I.. ( 2000;). Interactions of DnaA proteins from distantly related bacteria with the replication origin of the broad host range plasmid RK2. J Biol Chem275:18454–18461 [CrossRef][PubMed]
    [Google Scholar]
  11. Chattoraj D. K., Snyder K. M., Abeles A. L.. ( 1985;). P1 plasmid replication: multiple functions of RepA protein at the origin. Proc Natl Acad Sci U S A82:2588–2592 [CrossRef][PubMed]
    [Google Scholar]
  12. Dahlberg C., Linberg C., Torsvik V. L., Hermansson M.. ( 1997;). Conjugative plasmids isolated from bacteria in marine environments show various degrees of homology to each other and are not closely related to well-characterized plasmids. Appl Environ Microbiol63:4692–4697[PubMed]
    [Google Scholar]
  13. De Gelder L., Vandecasteele F. P., Brown C. J., Forney L. J., Top E. M.. ( 2005;). Plasmid donor affects host range of promiscuous IncP-1β plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol71:5309–5317 [CrossRef][PubMed]
    [Google Scholar]
  14. De Gelder L., Ponciano J. M., Joyce P., Top E. M.. ( 2007;). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology153:452–463 [CrossRef][PubMed]
    [Google Scholar]
  15. Demarre G., Guérout A. M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marlière P., Mazel D.. ( 2005;). A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol156:245–255 [CrossRef][PubMed]
    [Google Scholar]
  16. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  17. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A76:1648–1652 [CrossRef][PubMed]
    [Google Scholar]
  18. Filutowicz M., Davis G., Greener A., Helinski D. R.. ( 1985;). Autorepressor properties of the π-initiation protein encoded by plasmid R6K. Nucleic Acids Res13:103–114 [CrossRef][PubMed]
    [Google Scholar]
  19. Fricke W. F., Welch T. J., McDermott P. F., Mammel M. K., LeClerc J. E., White D. G., Cebula T. A., Ravel J.. ( 2009;). Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol191:4750–4757 [CrossRef][PubMed]
    [Google Scholar]
  20. Funnell B. E., Phillips G. J.. ( 2004;). Plasmid Biology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. García de Viedma D., Giraldo R., Ruiz-Echevarría M. J., Lurz R., Díaz-Orejas R.. ( 1995;). Transcription of repA, the gene of the initiation protein of the Pseudomonas plasmid pPS10, is autoregulated by interactions of the RepA protein at a symmetrical operator. J Mol Biol247:211–223 [CrossRef][PubMed]
    [Google Scholar]
  22. Garcillán-Barcia M. P., Francia M. V., de la Cruz F.. ( 2009;). The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev33:657–687 [CrossRef][PubMed]
    [Google Scholar]
  23. Garcillán-Barcia M. P., Alvarado A., de la Cruz F.. ( 2011;). Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev35:936–956 [CrossRef][PubMed]
    [Google Scholar]
  24. Gomes N. C., Flocco C. G., Costa R., Junca H., Vilchez R., Pieper D. H., Krögerrecklenfort E., Paranhos R., Mendonça-Hagler L. C., Smalla K.. ( 2010;). Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol74:276–290 [CrossRef][PubMed]
    [Google Scholar]
  25. Guiney D. G.. ( 1982;). Host range of conjugation and replication functions of the Escherichia coli sex plasmid Flac: comparison with the broad host-range plasmid RK2. J Mol Biol162:699–703 [CrossRef][PubMed]
    [Google Scholar]
  26. Guiney D. G., Hasegawa P., Davis C. E.. ( 1984;). Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes. Proc Natl Acad Sci U S A81:7203–7206 [CrossRef][PubMed]
    [Google Scholar]
  27. Haines A. S., Akhtar P., Stephens E. R., Jones K., Thomas C. M., Perkins C. D., Williams J. R., Day M. J., Fry J. C.. ( 2006;). Plasmids from freshwater environments capable of IncQ retrotransfer are diverse and include pQKH54, a new IncP-1 subgroup archetype. Microbiology152:2689–2701 [CrossRef][PubMed]
    [Google Scholar]
  28. Heinemann J. A., Sprague G. F. J. Jr. ( 1989;). Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature340:205–209 [CrossRef][PubMed]
    [Google Scholar]
  29. Heuer H., Smalla K.. ( 2012;). Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev36:1083–1104 [CrossRef][PubMed]
    [Google Scholar]
  30. Heuer H., Krögerrecklenfort E., Wellington E. M., Egan S., van Elsas J. D., van Overbeek L., Collard J. M., Guillaume G., Karagouni A. D. et al. ( 2002;). Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol42:289–302 [CrossRef][PubMed]
    [Google Scholar]
  31. Heuer H., Fox R. E., Top E. M.. ( 2007;). Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. FEMS Microbiol Ecol59:738–748 [CrossRef][PubMed]
    [Google Scholar]
  32. Heuer H., Ebers J., Weinert N., Smalla K.. ( 2010;). Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiol Ecol73:190–196[PubMed]
    [Google Scholar]
  33. Heuer H., Binh C. T., Jechalke S., Kopmann C., Zimmerling U., Krögerrecklenfort E., Ledger T., González B., Top E., Smalla K.. ( 2012;). IncP-1ϵ plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol3:2 [CrossRef][PubMed]
    [Google Scholar]
  34. Jacoby G. A., Jacob A. E., Hedges R. W.. ( 1976;). Recombination between plasmids of incompatibility groups P-1 and P-2. J Bacteriol127:1278–1285[PubMed]
    [Google Scholar]
  35. Jagura-Burdzy G., Thomas C. M.. ( 1994;). KorA protein of promiscuous plasmid RK2 controls a transcriptional switch between divergent operons for plasmid replication and conjugative transfer. Proc Natl Acad Sci U S A91:10571–10575 [CrossRef][PubMed]
    [Google Scholar]
  36. Jagura-Burdzy G., Thomas C. M.. ( 1997;). Dissection of the switch between genes for replication and transfer of promiscuous plasmid RK2: basis of the dominance of trfAp over trbAp and specificity for KorA in controlling the switch. J Mol Biol265:507–518 [CrossRef][PubMed]
    [Google Scholar]
  37. Jagura-Burdzy G., Khanim F., Smith C. A., Thomas C. M.. ( 1992;). Crosstalk between plasmid vegetative replication and conjugative transfer: repression of the trfA operon by trbA of broad host range plasmid RK2. Nucleic Acids Res20:3939–3944 [CrossRef][PubMed]
    [Google Scholar]
  38. Jobanputra R. S., Datta N.. ( 1974;). Trimethoprim R factors in enterobacteria from clinical specimens. J Med Microbiol7:169–177 [CrossRef][PubMed]
    [Google Scholar]
  39. Johnson T. J., Bielak E. M., Fortini D., Hansen L. H., Hasman H., Debroy C., Nolan L. K., Carattoli A.. ( 2012;). Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae . Plasmid68:43–50 [CrossRef][PubMed]
    [Google Scholar]
  40. Kamachi K., Sota M., Tamai Y., Nagata N., Konda T., Inoue T., Top E. M., Arakawa Y.. ( 2006;). Plasmid pBP136 from Bordetella pertussis represents an ancestral form of IncP-1β plasmids without accessory mobile elements. Microbiology152:3477–3484 [CrossRef][PubMed]
    [Google Scholar]
  41. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  42. Lee M. W., Rogers E. E., Stenger D. C.. ( 2010;). Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa . Appl Environ Microbiol76:7734–7740 [CrossRef][PubMed]
    [Google Scholar]
  43. Liebert C. A., Hall R. M., Summers A. O.. ( 1999;). Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev63:507–522[PubMed]
    [Google Scholar]
  44. Loftie-Eaton W., Rawlings D. E.. ( 2012;). Diversity, biology and evolution of IncQ-family plasmids. Plasmid67:15–34 [CrossRef][PubMed]
    [Google Scholar]
  45. Lykidis A., Pérez-Pantoja D., Ledger T., Mavromatis K., Anderson I. J., Ivanova N. N., Hooper S. D., Lapidus A., Lucas S. et al. ( 2010;). The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS ONE5:e9729 [CrossRef][PubMed]
    [Google Scholar]
  46. Maestro B., Sanz J. M., Faelen M., Couturier M., Díaz-Orejas R., Fernández-Tresguerres E.. ( 2002;). Modulation of pPS10 host range by DnaA. Mol Microbiol46:223–234 [CrossRef][PubMed]
    [Google Scholar]
  47. Maestro B., Sanz J. M., Díaz-Orejas R., Fernández-Tresguerres E.. ( 2003;). Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J Bacteriol185:1367–1375 [CrossRef][PubMed]
    [Google Scholar]
  48. Maher D., Taylor D. E.. ( 1993;). Host range and transfer efficiency of incompatibility group HI plasmids. Can J Microbiol39:581–587 [CrossRef][PubMed]
    [Google Scholar]
  49. Nagata Y., Natsui S., Endo R., Ohtsubo Y., Ichikawa N., Ankai A., Oguchi A., Fukui S., Fujita N., Tsuda M.. ( 2011;). Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol49:499–508 [CrossRef][PubMed]
    [Google Scholar]
  50. Nojiri H., Shintani M., Omori T.. ( 2004;). Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol64:154–174 [CrossRef][PubMed]
    [Google Scholar]
  51. Norberg P., Bergström M., Jethava V., Dubhashi D., Hermansson M.. ( 2011;). The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun2:268 [CrossRef][PubMed]
    [Google Scholar]
  52. Ohtsubo Y., Ikeda-Ohtsubo W., Nagata Y., Tsuda M.. ( 2008;). GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics9:376 [CrossRef][PubMed]
    [Google Scholar]
  53. R Development Core Team( 2010;). R: A language and environment for statistical computing. http://www.R-project.org
  54. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  55. Schlüter A., Heuer H., Szczepanowski R., Forney L. J., Thomas C. M., Pühler A., Top E. M.. ( 2003;). The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology149:3139–3153 [CrossRef][PubMed]
    [Google Scholar]
  56. Schlüter A., Szczepanowski R., Pühler A., Top E. M.. ( 2007;). Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev31:449–477 [CrossRef][PubMed]
    [Google Scholar]
  57. Schmidhauser T. J., Helinski D. R.. ( 1985;). Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bacteriol164:446–455[PubMed]
    [Google Scholar]
  58. Sen D., Yano H., Suzuki H., Król J. E., Rogers L., Brown C. J., Top E. M.. ( 2010;). Comparative genomics of pAKD4, the prototype IncP-1δ plasmid with a complete backbone. Plasmid63:98–107 [CrossRef][PubMed]
    [Google Scholar]
  59. Sen D., Brown C. J., Top E. M., Sullivan J.. ( 2013;). Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol30:154–166 [CrossRef][PubMed]
    [Google Scholar]
  60. Sevastsyanovich Y. R., Titok M. A., Krasowiak R., Bingle L. E., Thomas C. M.. ( 2005;). Ability of IncP-9 plasmid pM3 to replicate in Escherichia coli is dependent on both rep and par functions. Mol Microbiol57:819–833 [CrossRef][PubMed]
    [Google Scholar]
  61. Sevastsyanovich Y. R., Krasowiak R., Bingle L. E., Haines A. S., Sokolov S. L., Kosheleva I. A., Leuchuk A. A., Titok M. A., Smalla K., Thomas C. M.. ( 2008;). Diversity of IncP-9 plasmids of Pseudomonas . Microbiology154:2929–2941 [CrossRef][PubMed]
    [Google Scholar]
  62. Shintani M., Takahashi Y., Yamane H., Nojiri H.. ( 2010;). The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ25:253–265 [CrossRef][PubMed]
    [Google Scholar]
  63. Slater F. R., Bailey M. J., Tett A. J., Turner S. L.. ( 2008;). Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol66:3–13 [CrossRef][PubMed]
    [Google Scholar]
  64. Sota M., Yano H., Hughes J. M., Daughdrill G. W., Abdo Z., Forney L. J., Top E. M.. ( 2010;). Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J4:1568–1580 [CrossRef][PubMed]
    [Google Scholar]
  65. Stenger D. C., Lee M. W.. ( 2011;). Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids. Appl Environ Microbiol77:2522–2526 [CrossRef][PubMed]
    [Google Scholar]
  66. Stewart F. M., Levin B. R.. ( 1977;). The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics87:209–228[PubMed]
    [Google Scholar]
  67. Suzuki H., Sota M., Brown C. J., Top E. M.. ( 2008;). Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res36:e147 [CrossRef][PubMed]
    [Google Scholar]
  68. Suzuki H., Yano H., Brown C. J., Top E. M.. ( 2010;). Predicting plasmid promiscuity based on genomic signature. J Bacteriol192:6045–6055 [CrossRef][PubMed]
    [Google Scholar]
  69. Swack J. A., Pal S. K., Mason R. J., Abeles A. L., Chattoraj D. K.. ( 1987;). P1 plasmid replication: measurement of initiator protein concentration in vivo . J Bacteriol169:3737–3742[PubMed]
    [Google Scholar]
  70. Takahashi H., Shao M., Furuya N., Komano T.. ( 2011;). The genome sequence of the incompatibility group Iγ plasmid R621a: evolution of IncI plasmids. Plasmid66:112–121 [CrossRef][PubMed]
    [Google Scholar]
  71. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  72. Thomas C. M., Smith C. A.. ( 1987;). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol41:77–101 [CrossRef][PubMed]
    [Google Scholar]
  73. Wellington E. M. H., Boxall A. B. A., Cross P., Feil E. J., Gaze W. H., Hawkey P. M., Johnson-Rollings A. S., Jones D. L., Lee N. M. et al. ( 2013;). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis13:155–165 [CrossRef][PubMed]
    [Google Scholar]
  74. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L., Wood G. E. et al. ( 2001;). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294:2317–2323 [CrossRef][PubMed]
    [Google Scholar]
  75. Wu C. I., Ting C. T.. ( 2004;). Genes and speciation. Nat Rev Genet5:114–122 [CrossRef][PubMed]
    [Google Scholar]
  76. Yakobson E., Guiney G.. ( 1983;). Homology in the transfer origins of broad host range IncP plasmids: definition of two subgroups of P plasmids. Mol Gen Genet192:436–438 [CrossRef][PubMed]
    [Google Scholar]
  77. Yano H., Miyakoshi M., Ohshima K., Tabata M., Nagata Y., Hattori M., Tsuda M.. ( 2010;). Complete nucleotide sequence of TOL plasmid pDK1 provides evidence for evolutionary history of IncP-7 catabolic plasmids. J Bacteriol192:4337–4347 [CrossRef][PubMed]
    [Google Scholar]
  78. Yano H., Deckert G. E., Rogers L. M., Top E. M.. ( 2012;). Roles of long and short replication initiation proteins in the fate of IncP-1 plasmids. J Bacteriol194:1533–1543 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068387-0
Loading
/content/journal/micro/10.1099/mic.0.068387-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error