1887

Abstract

The last decade has shown an increased interest in the utilization of bacteria for applications ranging from bioremediation to wastewater purification and promotion of plant growth. In order to extend the current number of micro-organism mediated applications, a continued quest for new agents is required. This study focused on the genus , which is known to harbour strains with a very diverse set of interesting properties. The aim was to identify growth media that allow retrieval of a high diversity, as such increasing the chance of isolating isolates with beneficial properties. Three cultivation media: trypticase soy agar (TSA), potato dextrose agar (PDA) and isolation agar (PIA) were evaluated for their abilities to grow strains. TSA and PDA were found to generate the largest diversity. However, communities obtained with both media overlapped. Communities obtained with PIA, on the other hand, were unique. This indicated that the largest diversity is obtained by sampling from either PDA or TSA and from PIA in parallel. To evaluate biodiversity of the isolated members on the media, an appropriate biomarker had to be identified. Hence, an introductory investigation of the taxonomic resolution of the 16S rRNA, , and genes was performed. The gene sequences not only had a high phylogenetic content and the highest taxonomic resolution amongst the genes investigated, it also had a gene phylogeny that related well with that of the 16S rRNA gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068031-0
2013-10-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2097.html?itemId=/content/journal/micro/10.1099/mic.0.068031-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Sarma-Rupavtarm R., Klepac-Ceraj V., Polz M. F.. ( 2005;). PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol71:8966–8969 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  3. Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J.. ( 2003;). Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. Plant-Microbe Interact173–225 Stacey G., Keen N. T.. St. Paul: American Phytopathological Society (APS Press);
    [Google Scholar]
  4. Choi K., Gomez S. M.. ( 2009;). Comparison of phylogenetic trees through alignment of embedded evolutionary distances. BMC Bioinformatics10:423 [CrossRef][PubMed]
    [Google Scholar]
  5. Coorevits A.. ( 2011;). Pseudomonads and bacilli as important spoilage organisms in the dairy industry - a taxonomic study PhD thesis, Ghent University; Ghent, Belgium:
    [Google Scholar]
  6. Daayf F., Adam L., Fernando W. G. D.. ( 2003;). Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in-vitro, detached-leaves, and whole-plant testing systems. Can J Plant Pathol-Rev Can Phytopathol25:276–284 [CrossRef]
    [Google Scholar]
  7. Dawyndt P., Vancanneyt M., De Meyer H., Swings J.. ( 2005;). Knowledge accumulation and resolution of data inconsistencies during the integration of microbial information sources. IEEE Trans Knowl Data Eng17:1111–1126 [CrossRef]
    [Google Scholar]
  8. De Curtis F., Lima G., Vitullo D., De Cicco V.. ( 2010;). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot29:663–670 [CrossRef]
    [Google Scholar]
  9. Dunbar J., Takala S., Barns S. M., Davis J. A., Kuske C. R.. ( 1999;). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol65:1662–1669[PubMed]
    [Google Scholar]
  10. Farhadian M., Vachelard C., Duchez D., Larroche C.. ( 2008;). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol99:5296–5308 [CrossRef][PubMed]
    [Google Scholar]
  11. Gershman M. D., Kennedy D. J., Noble-Wang J., Kim C., Gullion J., Kacica M., Jensen B., Pascoe N., Saiman L.. & other authors ( 2008;). Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis47:1372–1379 [CrossRef][PubMed]
    [Google Scholar]
  12. Ghyselinck J., Velivelli S. L., Heylen K., O’Herlihy E., Franco J., Rojas M., De Vos P., Prestwich B. D.. ( 2013;). Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst Appl Microbiol36:116–127 [CrossRef][PubMed]
    [Google Scholar]
  13. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  14. Haas D., Défago G.. ( 2005;). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol3:307–319 [CrossRef][PubMed]
    [Google Scholar]
  15. Haas B. J., Gevers D., Earl A. M., Feldgarden M., Ward D. V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S. K.. & other authors ( 2011;). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res21:494–504 [CrossRef][PubMed]
    [Google Scholar]
  16. Hamady M., Lozupone C., Knight R.. ( 2010;). Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J4:17–27 [CrossRef][PubMed]
    [Google Scholar]
  17. Hughes J. B., Hellmann J. J., Ricketts T. H., Bohannan B. J. M.. ( 2001;). Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol67:4399–4406 [CrossRef][PubMed]
    [Google Scholar]
  18. Jeraldo P., Chia N., Goldenfeld N.. ( 2011;). On the suitability of short reads of 16S rRNA for phylogeny-based analyses in environmental surveys. Environ Microbiol13:3000–3009 [CrossRef][PubMed]
    [Google Scholar]
  19. Khan M. S., Zaidi A., Wani P. A., Oves M.. ( 2009;). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett7:1–19 [CrossRef]
    [Google Scholar]
  20. Kim H.-J., Jeun Y.-C.. ( 2006;). Resistance induction and enhanced tuber production by pre-inoculation with bacterial strains in potato plants against Phytophthora infestans. . Mycobiology34:67–72 [CrossRef]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  22. Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S. V.. & other authors ( 2012;). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  23. Moyer C. L., Tiedje J. M., Dobbs F. C., Karl D. M.. ( 1998;). Diversity of deep-sea hydrothermal vent Archaea from Loihi seamount, Hawaii. Deep Sea Res Part II Top Stud Oceanogr45:303–317 [CrossRef]
    [Google Scholar]
  24. Mulet M., Gomila M., Gruffaz C., Meyer J.-M., Palleroni N. J., Lalucat J., García-Valdés E.. ( 2008;). Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int J Syst Evol Microbiol58:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
  25. Mulet M., Bennasar A., Lalucat J., García-Valdés E.. ( 2009;). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  26. Mulet M., Lalucat J., García-Valdés E.. ( 2010;). DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol12:1513–1530[PubMed]
    [Google Scholar]
  27. Parkinson N., Bryant R., Bew J., Elphinstone J.. ( 2011;). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathol60:338–344 [CrossRef]
    [Google Scholar]
  28. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  29. Robinson D. F., Foulds L. R.. ( 1981;). Comparison of phylogenetic trees. Math Biosci53:131–147 [CrossRef]
    [Google Scholar]
  30. Scherwinski K., Grosch R., Berg G.. ( 2008;). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol64:106–116 [CrossRef][PubMed]
    [Google Scholar]
  31. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol75:7537–7541 [CrossRef][PubMed]
    [Google Scholar]
  32. Slabbinck B., Dawyndt P., Martens M., De Vos P., De Baets B.. ( 2008;). TaxonGap: a visualization tool for intra- and inter-species variation among individual biomarkers. Bioinformatics24:866–867 [CrossRef][PubMed]
    [Google Scholar]
  33. Stamatakis A.. ( 2006;). Phylogenetic models of rate heterogeneity: a high performance computing perspective. Parallel and Distributed Processing Symposium, 2006 IPDPS 2006 20th International
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  35. Webb C. O., Ackerly D. D., Kembel S. W.. ( 2008;). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics24:2098–2100 [CrossRef][PubMed]
    [Google Scholar]
  36. Yamamoto S., Harayama S.. ( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol48:813–819 [CrossRef][PubMed]
    [Google Scholar]
  37. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S.. ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology146:2385–2394[PubMed]
    [Google Scholar]
  38. Yan Z. N., Reddy M. S., Ryu C. M., McInroy J. A., Wilson M., Kloepper J. W.. ( 2002;). Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology92:1329–1333 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang J. B., Wu P. X., Hao B., Yu Z. N.. ( 2011;). Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol102:9866–9869 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068031-0
Loading
/content/journal/micro/10.1099/mic.0.068031-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error