Characterization of serovar Typhimurium aconitase A Free

Abstract

Aconitases (Acn) are iron–sulfur proteins that catalyse the reversible isomerization of citrate and isocitrate via the intermediate -aconitate in the Krebs cycle. Some Acn proteins are bi-functional and under conditions of iron starvation and oxidative stress lose their iron–sulfur clusters and become post-transcriptional regulators by binding specific mRNA targets. Many bacterial species possess two genetically distinct aconitase proteins, AcnA and AcnB. Current understanding of the regulation and functions of AcnA and AcnB in dual Acn bacteria is based on a model developed in . Thus, AcnB is the major Krebs cycle enzyme expressed during exponential growth, whereas AcnA is a more stable, stationary phase and stress-induced enzyme, and both Acns are bi-functional. Here a second dual Acn bacterium, serovar Typhimurium (. Typhimurium), has been analysed. Phenotypic traits of . Typhimurium mutants were consistent with AcnB acting as the major Acn protein. Promoter fusion experiments indicated that transcription was ~10-fold greater than that of and that expression was regulated by the cyclic-AMP receptor protein (CRP, glucose starvation), the fumarate nitrate reduction regulator (FNR, oxygen starvation), the ferric uptake regulator (Fur, iron starvation) and the superoxide response protein (SoxR, oxidative stress). In contrast to , . Typhimurium was not induced in the stationary phase. Furthermore, expression was enhanced in an mutant, presumably to partially compensate for the lack of AcnB activity. Isolated . Typhimurium AcnA protein had kinetic and mRNA-binding properties similar to those described for AcnA. Thus, the work reported here provides a second example of the regulation and function of AcnA and AcnB proteins in a dual Acn bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067934-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1209.html?itemId=/content/journal/micro/10.1099/mic.0.067934-0&mimeType=html&fmt=ahah

References

  1. Alén C., Sonenshein A. L.( 1999). Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci U S A 96:10412–10417 [View Article][PubMed]
    [Google Scholar]
  2. Banerjee S., Nandyala A. K., Raviprasad P., Ahmed N., Hasnain S. E.( 2007). Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189:4046–4052 [View Article][PubMed]
    [Google Scholar]
  3. Beinert H., Kennedy M. C., Stout C. D.( 1996). Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem Rev 96:2335–2374 [View Article][PubMed]
    [Google Scholar]
  4. Bennett B. D., Kimball E. H., Gao M., Osterhout R., Van Dien S. J., Rabinowitz J. D.( 2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.. Nat Chem Biol 5:593–599 [View Article][PubMed]
    [Google Scholar]
  5. Bradford M. M.( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  6. Cole S. T., Guest J. R.( 1980). Genetic and physical characterization of lambda transducing phages (lambda frdA) containing the fumarate reductase gene of Escherichia coli K12. Mol Gen Genet 178:409–418 [View Article][PubMed]
    [Google Scholar]
  7. Cunningham L., Gruer M. J., Guest J. R.( 1997). Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli.. Microbiology 143:3795–3805 [View Article][PubMed]
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L.( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  9. El-Mansi E. M. T., Nimmo H. G., Holms W. H.( 1985). The role of isocitrate in control of the phosphorylation of isocitrate dehydrogenase in Escherichia coli ML308. FEBS Lett 183:251–255 [View Article]
    [Google Scholar]
  10. Emptage M. H., Dreyers J. L., Kennedy M. C., Beinert H.( 1983). Optical and EPR characterization of different species of active and inactive aconitase. J Biol Chem 258:11106–11111[PubMed]
    [Google Scholar]
  11. Gruer M. J., Guest J. R.( 1994). Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli.. Microbiology 140:2531–2541 [View Article][PubMed]
    [Google Scholar]
  12. Gruer M. J., Artymiuk P. J., Guest J. R.( 1997a). The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6 [View Article][PubMed]
    [Google Scholar]
  13. Gruer M. J., Bradbury A. J., Guest J. R.( 1997b). Construction and properties of aconitase mutants of Escherichia coli.. Microbiology 143:1837–1846 [View Article][PubMed]
    [Google Scholar]
  14. Hausladen A., Fridovich I.( 1994). Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408[PubMed]
    [Google Scholar]
  15. Horswill A. R., Escalante-Semerena J. C.( 2001). In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry 40:4703–4713 [View Article][PubMed]
    [Google Scholar]
  16. Jordan P. A., Tang Y., Bradbury A. J., Thomson A. J., Guest J. R.( 1999). Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). Biochem J 344:739–746 [View Article][PubMed]
    [Google Scholar]
  17. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H.( 1983). The role of iron in the activation-inactivation of aconitase. J Biol Chem 258:11098–11105[PubMed]
    [Google Scholar]
  18. Laemmli U. K.( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  19. Li C., Evans R. M.( 1997). Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Res 25:4165–4166 [View Article][PubMed]
    [Google Scholar]
  20. Lodge J., Fear J., Busby S., Gunasekaran P., Kamini N. R.( 1992). Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett 74:271–276 [View Article][PubMed]
    [Google Scholar]
  21. Martinez E., Bartolomé B., de la Cruz F.( 1988). pACYC184-derived cloning vectors containing the multiple cloning site and lacZ α reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162 [View Article][PubMed]
    [Google Scholar]
  22. Miller J.( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  23. Pechter K. B., Meyer F. M., Serio A. W., Stülke J., Sonenshein A. L.( 2013). Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis.. J Bacteriol 195:1525–1537 [View Article][PubMed]
    [Google Scholar]
  24. Prodromou C., Haynes M. J., Guest J. R.( 1991). The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J Gen Microbiol 137:2505–2515 [View Article][PubMed]
    [Google Scholar]
  25. Robbins A. H., Stout C. D.( 1989). Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc Natl Acad Sci U S A 86:3639–3643 [View Article][PubMed]
    [Google Scholar]
  26. Sambrook J., Russell D.( 2001). Molecular Cloning, 3rd edn. New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  27. Tang Y., Guest J. R.( 1999). Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145:3069–3079[PubMed]
    [Google Scholar]
  28. Tang Y., Quail M. A., Artymiuk P. J., Guest J. R., Green J.( 2002). Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology 148:1027–1037[PubMed]
    [Google Scholar]
  29. Tang Y., Guest J. R., Artymiuk P. J., Read R. C., Green J.( 2004). Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51:1817–1826 [View Article][PubMed]
    [Google Scholar]
  30. Tang Y., Guest J. R., Artymiuk P. J., Green J.( 2005). Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 56:1149–1158 [View Article][PubMed]
    [Google Scholar]
  31. Theil E. C.( 1994). Iron regulatory elements (IREs): a family of mRNA non-coding sequences. Biochem J 304:1–11[PubMed]
    [Google Scholar]
  32. Walden W. E., Selezneva A. I., Dupuy J., Volbeda A., Fontecilla-Camps J. C., Theil E. C., Volz K.( 2006). Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314:1903–1908 [View Article][PubMed]
    [Google Scholar]
  33. Wang J., Pantopoulos K.( 2011). Regulation of cellular iron metabolism. Biochem J 434:365–381 [View Article][PubMed]
    [Google Scholar]
  34. Williams C. H., Stillman T. J., Barynin V. V., Sedelnikova S. E., Tang Y., Green J., Guest J. R., Artymiuk P. J.( 2002). E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. Nat Struct Biol 9:447–452 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067934-0
Loading
/content/journal/micro/10.1099/mic.0.067934-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed