1887

Abstract

is a waterborne pathogen that was responsible for an outbreak of severe soft-tissue infections among fish farmers and fish consumers in Israel. Several factors have been shown to be associated with virulence. However, the transcriptome profile of the pathogen during human infection has not been determined yet. We compared the transcriptome profile, using RNA sequencing, of a human-pathogenic strain harvested directly from tissue of a patient suffering from severe soft-tissue infection with necrotizing fasciitis, with the same strain and three other environmental strains grown . The five sequenced libraries were aligned to the reference genomes of strains CMCP6 and YJ016. Approximately 47.8 to 62.3 million paired-end raw reads were generated from the five runs. Nearly 84 % of the genome was covered by reads from at least one of the five runs, suggesting that nearly 16 % of the genome is not transcribed or is transcribed at low levels. We identified 123 genes that were differentially expressed during the acute phase of infection. Sixty-three genes were mapped to the large chromosome, 47 genes mapped to the small chromosome and 13 genes mapped to the YJ016 plasmid. The 123 genes fell into a variety of functional categories including transcription, signal transduction, cell motility, carbohydrate metabolism, intracellular trafficking and cell envelope biogenesis. Among the genes differentially expressed during human infection we identified genes encoding bacterial toxin (RtxA1) and genes involved in flagellar components, Flp-coding region, GGDEF family protein, iron acquisition system and sialic acid metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067900-0
2013-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1878.html?itemId=/content/journal/micro/10.1099/mic.0.067900-0&mimeType=html&fmt=ahah

References

  1. Alice A. F., Naka H., Crosa J. H.. ( 2008;). Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. . Infect Immun 76:, 4019–4037. [CrossRef][PubMed]
    [Google Scholar]
  2. Anders S., Huber W.. ( 2010;). Differential expression analysis for sequence count data. . Genome Biol 11:, R106. [CrossRef][PubMed]
    [Google Scholar]
  3. Bisharat N.. ( 2010;). Population genetics of vibrios. . In Bacterial Population Genetics in Infectious Diseases, pp. 378–401. Edited by Robinson D. A., Falush D., Feil E. J... Hoboken, NJ: : Wiley;. [CrossRef]
    [Google Scholar]
  4. Bisharat N., Agmon V., Finkelstein R., Raz R., Ben-Dror G., Lerner L., Soboh S., Colodner R., Cameron D. N.. & other authors ( 1999;). Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. . Lancet 354:, 1421–1424. [CrossRef][PubMed]
    [Google Scholar]
  5. Bisharat N., Cohen D. I., Harding R. M., Falush D., Crook D. W., Peto T., Maiden M. C.. ( 2005;). Hybrid Vibrio vulnificus. . Emerg Infect Dis 11:, 30–35. [CrossRef][PubMed]
    [Google Scholar]
  6. Bisharat N., Amaro C., Fouz B., Llorens A., Cohen D. I.. ( 2007a;). Serological and molecular characteristics of Vibrio vulnificus biotype 3: evidence for high clonality. . Microbiology 153:, 847–856. [CrossRef][PubMed]
    [Google Scholar]
  7. Bisharat N., Cohen D. I., Maiden M. C., Crook D. W., Peto T., Harding R. M.. ( 2007b;). The evolution of genetic structure in the marine pathogen, Vibrio vulnificus. . Infect Genet Evol 7:, 685–693. [CrossRef][PubMed]
    [Google Scholar]
  8. Bisharat N., Bialik A., Paz E., Amaro C., Cohen D. I.. ( 2011;). Serum antibodies to Vibrio vulnificus biotype 3 lipopolysaccharide and susceptibility to disease caused by the homologous V. vulnificus biotype. . Epidemiol Infect 139:, 472–481. [CrossRef][PubMed]
    [Google Scholar]
  9. Broza Y. Y., Danin-Poleg Y., Lerner L., Valinsky L., Broza M., Kashi Y.. ( 2009;). Epidemiologic study of Vibrio vulnificus infections by using variable number tandem repeats. . Emerg Infect Dis 15:, 1282–1285. [CrossRef][PubMed]
    [Google Scholar]
  10. Broza Y. Y., Raz N., Lerner L., Danin-Poleg Y., Kashi Y.. ( 2012;). Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup. . Int J Food Microbiol 153:, 436–443. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen C. Y., Wu K. M., Chang Y. C., Chang C. H., Tsai H. C., Liao T. L., Liu Y. M., Chen H. J., Shen A. B.. & other authors ( 2003;). Comparative genome analysis of Vibrio vulnificus, a marine pathogen. . Genome Res 13:, 2577–2587. [CrossRef][PubMed]
    [Google Scholar]
  12. Cohen A. L. V., Oliver J. D., DePaola A., Feil E. J., Boyd E. F.. ( 2007;). Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. . Appl Environ Microbiol 73:, 5553–5565. [CrossRef][PubMed]
    [Google Scholar]
  13. Gauthier J. D., Jones M. K., Thiaville P., Joseph J. L., Swain R. A., Krediet C. J., Gulig P. A., Teplitski M., Wright A. C.. ( 2010;). Role of GacA in virulence of Vibrio vulnificus. . Microbiology 156:, 3722–3733. [CrossRef][PubMed]
    [Google Scholar]
  14. Gray L. D., Kreger A. S.. ( 1985;). Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. . Infect Immun 48:, 62–72.[PubMed]
    [Google Scholar]
  15. Gulig P. A., Bourdage K. L., Starks A. M.. ( 2005;). Molecular pathogenesis of Vibrio vulnificus. . J Microbiol 43: (Spec No.), 118–131.[PubMed]
    [Google Scholar]
  16. Gulig P. A., de Crécy-Lagard V., Wright A. C., Walts B., Telonis-Scott M., McIntyre L. M.. ( 2010;). SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. . BMC Genomics 11:, 512. [CrossRef][PubMed]
    [Google Scholar]
  17. Haq S. M., Dayal H. H.. ( 2005;). Chronic liver disease and consumption of raw oysters: a potentially lethal combination – a review of Vibrio vulnificus septicemia. . Am J Gastroenterol 100:, 1195–1199. [CrossRef][PubMed]
    [Google Scholar]
  18. Høi L., Larsen J. L., Dalsgaard I., Dalsgaard A.. ( 1998;). Occurrence of Vibrio vulnificus biotypes in Danish marine environments. . Appl Environ Microbiol 64:, 7–13.[PubMed]
    [Google Scholar]
  19. Jeong H. G., Satchell K. J.. ( 2012;). Additive function of Vibrio vulnificus MARTX(Vv) and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. . PLoS Pathog 8:, e1002581. [CrossRef][PubMed]
    [Google Scholar]
  20. Jones M. K., Oliver J. D.. ( 2009;). Vibrio vulnificus: disease and pathogenesis. . Infect Immun 77:, 1723–1733. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim Y. R., Lee S. E., Kim C. M., Kim S. Y., Shin E. K., Shin D. H., Chung S. S., Choy H. E., Progulske-Fox A.. & other authors ( 2003;). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. . Infect Immun 71:, 5461–5471. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim Y. R., Kim S. Y., Kim C. M., Lee S. E., Rhee J. H.. ( 2005;). Essential role of an adenylate cyclase in regulating Vibrio vulnificus virulence. . FEMS Microbiol Lett 243:, 497–503. [CrossRef][PubMed]
    [Google Scholar]
  23. Kim C. M., Park R. Y., Park J. H., Sun H. Y., Bai Y. H., Ryu P. Y., Kim S. Y., Rhee J. H., Shin S. H.. ( 2006;). Vibrio vulnificus vulnibactin, but not metalloprotease VvpE, is essentially required for iron-uptake from human holotransferrin. . Biol Pharm Bull 29:, 911–918. [CrossRef][PubMed]
    [Google Scholar]
  24. Kim Y. R., Lee S. E., Kook H., Yeom J. A., Na H. S., Kim S. Y., Chung S. S., Choy H. E., Rhee J. H.. ( 2008;). Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. . Cell Microbiol 10:, 848–862. [CrossRef][PubMed]
    [Google Scholar]
  25. Koo B. S., Lee J. H., Kim S. C., Yoon H. Y., Kim K. A., Kwon K. B., Kim H. R., Park J. W., Park B. H.. ( 2007;). Phospholipase A as a potent virulence factor of Vibrio vulnificus. . Int J Mol Med 20:, 913–918.[PubMed]
    [Google Scholar]
  26. Lee J. H., Rho J. B., Park K. J., Kim C. B., Han Y. S., Choi S. H., Lee K. H., Park S. J.. ( 2004a;). Role of flagellum and motility in pathogenesis of Vibrio vulnificus. . Infect Immun 72:, 4905–4910. [CrossRef][PubMed]
    [Google Scholar]
  27. Lee S. E., Ryu P. Y., Kim S. Y., Kim Y. R., Koh J. T., Kim O. J., Chung S. S., Choy H. E., Rhee J. H.. ( 2004b;). Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. . Biochem Biophys Res Commun 324:, 86–91. [CrossRef][PubMed]
    [Google Scholar]
  28. Lee J. H., Kim M. W., Kim B. S., Kim S. M., Lee B. C., Kim T. S., Choi S. H.. ( 2007;). Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. . J Microbiol 45:, 146–152.[PubMed]
    [Google Scholar]
  29. Lee B. C., Choi S. H., Kim T. S.. ( 2008a;). Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. . Microbes Infect 10:, 1504–1513. [CrossRef][PubMed]
    [Google Scholar]
  30. Lee B. C., Lee J. H., Kim M. W., Kim B. S., Oh M. H., Kim K. S., Kim T. S., Choi S. H.. ( 2008b;). Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. . Infect Immun 76:, 1509–1517. [CrossRef][PubMed]
    [Google Scholar]
  31. Levine W. C., Griffin P. M..Gulf Coast Vibrio Working Group ( 1993;). Vibrio infections on the Gulf Coast: results of first year of regional surveillance. . J Infect Dis 167:, 479–483.[PubMed]
    [Google Scholar]
  32. Li H., Durbin R.. ( 2009;). Fast and accurate short read alignment with Burrows-Wheeler transform. . Bioinformatics 25:, 1754–1760. [CrossRef][PubMed]
    [Google Scholar]
  33. Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanová J., Procházková K., Adkins I., Hejnová-Holubová J.. & other authors ( 2010;). RTX proteins: a highly diverse family secreted by a common mechanism. . FEMS Microbiol Rev 34:, 1076–1112.[PubMed]
    [Google Scholar]
  34. Litwin C. M., Rayback T. W., Skinner J.. ( 1996;). Role of catechol siderophore synthesis in Vibrio vulnificus virulence. . Infect Immun 64:, 2834–2838.[PubMed]
    [Google Scholar]
  35. MacLean D., Jones J. D., Studholme D. J.. ( 2009;). Application of ‘next-generation’ sequencing technologies to microbial genetics. . Nat Rev Microbiol 7:, 287–296.[PubMed]
    [Google Scholar]
  36. Maddocks S. E., Oyston P. C.. ( 2008;). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. . Microbiology 154:, 3609–3623. [CrossRef][PubMed]
    [Google Scholar]
  37. Mandlik A., Livny J., Robins W. P., Ritchie J. M., Mekalanos J. J., Waldor M. K.. ( 2011;). RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. . Cell Host Microbe 10:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  38. McPherson V. L., Watts J. A., Simpson L. M., Oliver J. D.. ( 1991;). Physiological effects of the lipopolysaccharide of Vibrio vulnificus on mice and rats. . Microbios 67:, 141–149.[PubMed]
    [Google Scholar]
  39. Morrison S. S., Williams T., Cain A., Froelich B., Taylor C., Baker-Austin C., Verner-Jeffreys D., Hartnell R., Oliver J. D., Gibas C. J.. ( 2012;). Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. . PLoS ONE 7:, e37553. [CrossRef][PubMed]
    [Google Scholar]
  40. Myatt D. C., Davis G. H.. ( 1989;). Isolation of medically significant Vibrio species from riverine sources in south east Queensland. . Microbios 60:, 111–123.[PubMed]
    [Google Scholar]
  41. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M.. ( 2008;). The transcriptional landscape of the yeast genome defined by RNA sequencing. . Science 320:, 1344–1349. [CrossRef][PubMed]
    [Google Scholar]
  42. Oliver J. D.. ( 1989;). Vibrio vulnificus. . In Foodborne Bacterial Pathogens, pp. 569–600. Edited by Doyle M. P... New York:: Marcel Dekker;.
    [Google Scholar]
  43. Oliver J. D.. ( 2006;). Vibrio vulnificus. . In Biology of Vibrios, pp. 349–366. Edited by Thompson F. L., Austin B., Swings J. G... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  44. Oliver J. D., Warner R. A., Cleland D. R.. ( 1982;). Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. . Appl Environ Microbiol 44:, 1404–1414.[PubMed]
    [Google Scholar]
  45. Paranjpye R. N., Strom M. S.. ( 2005;). A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. . Infect Immun 73:, 1411–1422. [CrossRef][PubMed]
    [Google Scholar]
  46. Paranjpye R. N., Lara J. C., Pepe J. C., Pepe C. M., Strom M. S.. ( 1998;). The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. . Infect Immun 66:, 5659–5668.[PubMed]
    [Google Scholar]
  47. Park J. H., Cho Y. J., Chun J., Seok Y. J., Lee J. K., Kim K. S., Lee K. H., Park S. J., Choi S. H.. ( 2011;). Complete genome sequence of Vibrio vulnificus MO6-24/O. . J Bacteriol 193:, 2062–2063. [CrossRef][PubMed]
    [Google Scholar]
  48. Pei J., Grishin N. V.. ( 2001;). GGDEF domain is homologous to adenylyl cyclase. . Proteins 42:, 210–216. [CrossRef][PubMed]
    [Google Scholar]
  49. Pinto A. C., Melo-Barbosa H. P., Miyoshi A., Silva A., Azevedo V.. ( 2011;). Application of RNA-seq to reveal the transcript profile in bacteria. . Genet Mol Res 10:, 1707–1718. [CrossRef][PubMed]
    [Google Scholar]
  50. Quinlan A. R., Hall I. M.. ( 2010;). BEDTools: a flexible suite of utilities for comparing genomic features. . Bioinformatics 26:, 841–842. [CrossRef][PubMed]
    [Google Scholar]
  51. Shao C. P., Hor L. I.. ( 2000;). Metalloprotease is not essential for Vibrio vulnificus virulence in mice. . Infect Immun 68:, 3569–3573. [CrossRef][PubMed]
    [Google Scholar]
  52. Simpson L. M., White V. K., Zane S. F., Oliver J. D.. ( 1987;). Correlation between virulence and colony morphology in Vibrio vulnificus. . Infect Immun 55:, 269–272.[PubMed]
    [Google Scholar]
  53. van Vliet A. H.. ( 2010;). Next generation sequencing of microbial transcriptomes: challenges and opportunities. . FEMS Microbiol Lett 302:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  54. Veenstra J., Rietra P. J., Coster J. M., Slaats E., Dirks-Go S.. ( 1994;). Seasonal variations in the occurrence of Vibrio vulnificus along the Dutch coast. . Epidemiol Infect 112:, 285–290. [CrossRef][PubMed]
    [Google Scholar]
  55. Webster A. C., Litwin C. M.. ( 2000;). Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. . Infect Immun 68:, 526–534. [CrossRef][PubMed]
    [Google Scholar]
  56. Wright A. C., Morris J. G. Jr. ( 1991;). The extracellular cytolysin of Vibrio vulnificus: inactivation and relationship to virulence in mice. . Infect Immun 59:, 192–197.[PubMed]
    [Google Scholar]
  57. Zaidenstein R., Sadik C., Lerner L., Valinsky L., Kopelowitz J., Yishai R., Agmon V., Parsons M., Bopp C., Weinberger M.. ( 2008;). Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. . Emerg Infect Dis 14:, 1875–1882. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067900-0
Loading
/content/journal/micro/10.1099/mic.0.067900-0
Loading

Data & Media loading...

Supplements

TableS4 

EXCEL

TableS5 

EXCEL

TableS3 

EXCEL

TableS2 

EXCEL

TableS1 

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error