1887

Abstract

We conducted experiments in order to examine whether the probiotic strain Shirota YIT9029 (LcS) and antagonism of and , involves inhibition of the swimming motility of these pathogens. We report the irreversible inhibition of the swimming motility of strain 1101 and reversible inhibition of serovar Typhimurium ( Typhimurium) strain SL1344 by compound(s) secreted by LcS. In 1101, irreversible inhibition results in the helical cells being progressively replaced by cells with ‘c’-shaped and coccoid morphologies, accompanied by a loss of FlaA and FlaB flagellin expression. In Typhimurium SL1344, transient inhibition develops after membrane depolarization and without modification of expression of FliC flagellin. The inhibitory activity of strain LcS against both Typhimurium and swimming motilities is linked with a small sized, heat-sensitive, and partially trypsin-sensitive, secreted compound(s), and needed the cooperation of the secreted membrane permeabilizing lactic acid metabolite. The inhibition of Typhimurium SL1344 swimming motility leads to delayed cell entry into human enterocyte-like Caco-2/TC7 cells and a strong decrease of cell entry into human mucus-secreting HT29-MTX cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067678-0
2013-09-01
2020-11-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1956.html?itemId=/content/journal/micro/10.1099/mic.0.067678-0&mimeType=html&fmt=ahah

References

  1. Alakomi H. L., Skyttä E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. M..( 2000;). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol66:2001–2005 [CrossRef][PubMed]
    [Google Scholar]
  2. Aldridge P., Hughes K. T..( 2002;). Regulation of flagellar assembly. Curr Opin Microbiol5:160–165 [CrossRef][PubMed]
    [Google Scholar]
  3. Asahara T., Shimizu K., Takada T., Kado S., Yuki N., Morotomi M., Tanaka R., Nomoto K..( 2011;). Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice. J Appl Microbiol110:163–173 [CrossRef][PubMed]
    [Google Scholar]
  4. Atassi F., Servin A. L..( 2010;). Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett304:29–38 [CrossRef][PubMed]
    [Google Scholar]
  5. Avonts L., De Vuyst L..( 2001;). Antimicrobial potential of probiotic lactic acid bacteria. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet66:3b543–550[PubMed]
    [Google Scholar]
  6. Azevedo N. F., Almeida C., Cerqueira L., Dias S., Keevil C. W., Vieira M. J..( 2007;). Coccoid form of Helicobacter pylori as a morphological manifestation of cell adaptation to the environment. Appl Environ Microbiol73:3423–3427 [CrossRef][PubMed]
    [Google Scholar]
  7. Berry V., Jennings K., Woodnutt G..( 1995;). Bactericidal and morphological effects of amoxicillin on Helicobacter pylori.. Antimicrob Agents Chemother39:1859–1861 [CrossRef][PubMed]
    [Google Scholar]
  8. Bland M. V., Ismail S., Heinemann J. A., Keenan J. I..( 2004;). The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother48:1983–1988 [CrossRef][PubMed]
    [Google Scholar]
  9. Bron P. A., van Baarlen P., Kleerebezem M..( 2012;). Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol10:66–78[PubMed]
    [Google Scholar]
  10. Can F., Karahan C., Dolapci I., Demirbilek M., Tekeli A., Arslan H..( 2008;). Urease activity and urea gene sequencing of coccoid forms of H. pylori induced by different factors. Curr Microbiol56:150–155 [CrossRef][PubMed]
    [Google Scholar]
  11. Cats A., Kuipers E. J., Bosschaert M. A., Pot R. G., Vandenbroucke-Grauls C. M., Kusters J. G..( 2003;). Effect of frequent consumption of a Lactobacillus casei-containing milk drink in Helicobacter pylori-colonized subjects. Aliment Pharmacol Ther17:429–435 [CrossRef][PubMed]
    [Google Scholar]
  12. Chantret I., Rodolosse A., Barbat A., Dussaulx E., Brot-Laroche E., Zweibaum A., Rousset M..( 1994;). Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci107:213–225[PubMed]
    [Google Scholar]
  13. Chevance F. F., Hughes K. T..( 2008;). Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol6:455–465 [CrossRef][PubMed]
    [Google Scholar]
  14. Coconnier M. H., Liévin V., Bernet-Camard M. F., Hudault S., Servin A. L..( 1997;). Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother41:1046–1052[PubMed]
    [Google Scholar]
  15. Coconnier M. H., Lievin V., Hemery E., Servin A. L..( 1998;). Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol64:4573–4580[PubMed]
    [Google Scholar]
  16. Coconnier M. H., Liévin V., Lorrot M., Servin A. L..( 2000;). Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Appl Environ Microbiol66:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  17. Coconnier-Polter M. H., Liévin-Le Moal V., Servin A. L..( 2005;). A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica serovar Typhimurium by triggering lethal bacterial membrane damage. Appl Environ Microbiol71:6115–6120 [CrossRef][PubMed]
    [Google Scholar]
  18. Corthésy-Theulaz I., Porta N., Pringault E., Racine L., Bogdanova A., Kraehenbuhl J. P., Blum A. L., Michetti P..( 1996;). Adhesion of Helicobacter pylori to polarized T84 human intestinal cell monolayers is pH dependent. Infect Immun64:3827–3832[PubMed]
    [Google Scholar]
  19. Cover T. L., Blaser M. J..( 2009;). Helicobacter pylori in health and disease. Gastroenterology136:1863–1873 [CrossRef][PubMed]
    [Google Scholar]
  20. de Waard R., Garssen J., Bokken G. C., Vos J. G..( 2002;). Antagonistic activity of Lactobacillus casei strain Shirota against gastrointestinal Listeria monocytogenes infection in rats. Int J Food Microbiol73:93–100 [CrossRef][PubMed]
    [Google Scholar]
  21. DeLoney C. R., Schiller N. L..( 1999;). Competition of various β-lactam antibiotics for the major penicillin-binding proteins of Helicobacter pylori: antibacterial activity and effects on bacterial morphology. Antimicrob Agents Chemother43:2702–2709[PubMed]
    [Google Scholar]
  22. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J..( 1999;). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis.. Microbiology145:1023–1031 [CrossRef][PubMed]
    [Google Scholar]
  23. FAO/WHO (2001).Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteriahttp://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf
  24. Fayol-Messaoudi D., Berger C. N., Coconnier-Polter M. H., Liévin-Le Moal V., Servin A. L..( 2005;). pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar Typhimurium. Appl Environ Microbiol71:6008–6013 [CrossRef][PubMed]
    [Google Scholar]
  25. Fayol-Messaoudi D., Coconnier-Polter M. H., Moal V. L., Atassi F., Berger C. N., Servin A. L..( 2007;). The Lactobacillus plantarum strain ACA-DC287 isolated from a Greek cheese demonstrates antagonistic activity in vitro and in vivo against Salmonella enterica serovar Typhimurium. J Appl Microbiol103:657–665 [CrossRef][PubMed]
    [Google Scholar]
  26. Galán J. E..( 2001;). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol17:53–86 [CrossRef][PubMed]
    [Google Scholar]
  27. Grassl G. A., Finlay B. B..( 2008;). Pathogenesis of enteric Salmonella infections. Curr Opin Gastroenterol24:22–26 [CrossRef][PubMed]
    [Google Scholar]
  28. Harshey R. M..( 2003;). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol57:249–273 [CrossRef][PubMed]
    [Google Scholar]
  29. Hoiseth S. K., Stocker B. A..( 1981;). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature291:238–239 [CrossRef][PubMed]
    [Google Scholar]
  30. Isobe H., Nishiyama A., Takano T., Higuchi W., Nakagawa S., Taneike I., Fukushima Y., Yamamoto T..( 2012;). Reduction of overall Helicobacter pylori colonization levels in the stomach of Mongolian gerbil by Lactobacillus johnsonii La1 (LC1) and its in vitro activities against H. pylori motility and adherence. Biosci Biotechnol Biochem76:850–852 [CrossRef][PubMed]
    [Google Scholar]
  31. Jones B. D., Lee C. A., Falkow S..( 1992;). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun60:2475–2480[PubMed]
    [Google Scholar]
  32. Josenhans C., Suerbaum S..( 2002;). The role of motility as a virulence factor in bacteria. Int J Med Microbiol291:605–614 [CrossRef][PubMed]
    [Google Scholar]
  33. Karim Q. N., Logan R. P., Puels J., Karnholz A., Worku M. L..( 1998;). Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J Clin Pathol51:623–628 [CrossRef][PubMed]
    [Google Scholar]
  34. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R. J., Bron P. A..( 2010;). The extracellular biology of the lactobacilli. FEMS Microbiol Rev34:199–230 [CrossRef][PubMed]
    [Google Scholar]
  35. Lebeer S., Vanderleyden J., De Keersmaecker S. C..( 2008;). Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev72:728–764 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee S. K., Stack A., Katzowitsch E., Aizawa S. I., Suerbaum S., Josenhans C..( 2003;). Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect5:1345–1356 [CrossRef][PubMed]
    [Google Scholar]
  37. Lertsethtakarn P., Ottemann K. M., Hendrixson D. R..( 2011;). Motility and chemotaxis in Campylobacter and Helicobacter.. Annu Rev Microbiol65:389–410 [CrossRef][PubMed]
    [Google Scholar]
  38. Lesuffleur T., Barbat A., Dussaulx E., Zweibaum A..( 1990;). Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res50:6334–6343[PubMed]
    [Google Scholar]
  39. Leying H., Suerbaum S., Geis G., Haas R..( 1992;). Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol6:2863–2874 [CrossRef][PubMed]
    [Google Scholar]
  40. Liévin-Le Moal V., Servin A. L., Coconnier-Polter M. H..( 2005;). The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes.. Cell Microbiol7:1035–1048 [CrossRef][PubMed]
    [Google Scholar]
  41. Liévin-Le Moal V., Amsellem R., Servin A. L..( 2011;). Impairment of swimming motility by antidiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells. Antimicrob Agents Chemother55:4810–4820 [CrossRef][PubMed]
    [Google Scholar]
  42. Lockman H. A., Curtiss R. III.( 1990;). Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun58:137–143[PubMed]
    [Google Scholar]
  43. Makras L., Triantafyllou V., Fayol-Messaoudi D., Adriany T., Zoumpopoulou G., Tsakalidou E., Servin A., De Vuyst L..( 2006;). Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol157:241–247 [CrossRef][PubMed]
    [Google Scholar]
  44. Malago J. J., Nemeth E., Koninkx J. F. J. G., Tooten P. C. J., Fajdiga S., van Dijk J. E..( 2010;). Microbial products from probiotic bacteria inhibit Salmonella enteritidis 857-induced IL-8 synthesis in Caco-2 cells. Folia Microbiol (Praha)55:401–408 [CrossRef][PubMed]
    [Google Scholar]
  45. McCormick B. A., Stocker B. A., Laux D. C., Cohen P. S..( 1988;). Roles of motility, chemotaxis, and penetration through and growth in intestinal mucus in the ability of an avirulent strain of Salmonella typhimurium to colonize the large intestine of streptomycin-treated mice. Infect Immun56:2209–2217[PubMed]
    [Google Scholar]
  46. Michetti P., Porta N., Mahan M. J., Slauch J. M., Mekalanos J. J., Blum A. L., Kraehenbuhl J. P., Neutra M. R..( 1994;). Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium.. Gastroenterology107:915–923[PubMed]
    [Google Scholar]
  47. Minamino T., Imada K., Namba K..( 2008;). Molecular motors of the bacterial flagella. Curr Opin Struct Biol18:693–701 [CrossRef][PubMed]
    [Google Scholar]
  48. Mouery K., Rader B. A., Gaynor E. C., Guillemin K..( 2006;). The stringent response is required for Helicobacter pylori survival of stationary phase, exposure to acid, and aerobic shock. J Bacteriol188:5494–5500 [CrossRef][PubMed]
    [Google Scholar]
  49. O’Regan E., Quinn T., Frye J. G., Pagès J. M., Porwollik S., Fedorka-Cray P. J., McClelland M., Fanning S..( 2010;). Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype Enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother54:367–374 [CrossRef][PubMed]
    [Google Scholar]
  50. Patrick J. E., Kearns D. B..( 2012;). Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microbiol83:14–23 [CrossRef][PubMed]
    [Google Scholar]
  51. Pontier-Bres R., Prodon F., Munro P., Rampal P., Lemichez E., Peyron J. F., Czerucka D..( 2012;). Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii.. PLoS ONE7:e33796 [CrossRef][PubMed]
    [Google Scholar]
  52. Prasad K., Caplan S. R., Eisenbach M..( 1998;). Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor. J Mol Biol280:821–828 [CrossRef][PubMed]
    [Google Scholar]
  53. Pridmore R. D., Pittet A. C., Praplan F., Cavadini C..( 2008;). Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett283:210–215 [CrossRef][PubMed]
    [Google Scholar]
  54. Sahagún-Flores J. E., López-Peña L. S., de la Cruz-Ramírez Jaimes J., García-Bravo M. S., Peregrina-Gómez R., de Alba-García J. E..( 2007;). [Eradication of Helicobacter pylori: triple treatment scheme plus Lactobacillus vs. triple treatment alone]. Cir Cir75:333–336[PubMed]
    [Google Scholar]
  55. Saito N., Konishi K., Kato M., Takeda H., Asaka M., Ooi H. K..( 2008;). Coccoid formation as a mechanism of species-preservation in Helicobacter pylori: an ultrastructural study. Hokkaido Igaku Zasshi83:291–295[PubMed]
    [Google Scholar]
  56. Salama N. R., Hartung M. L., Müller A..( 2013;). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori.. Nat Rev Microbiol11:385–399 [CrossRef][PubMed]
    [Google Scholar]
  57. Sato F., Saito N., Konishi K., Shoji E., Kato M., Takeda H., Sugiyama T., Asaka M..( 2003;). Ultrastructural observation of Helicobacter pylori in glucose-supplemented culture media. J Med Microbiol52:675–679 [CrossRef][PubMed]
    [Google Scholar]
  58. Schreiber S., Stüben M., Josenhans C., Scheid P., Suerbaum S..( 1999;). In vivo distribution of Helicobacter felis in the gastric mucus of the mouse: experimental method and results. Infect Immun67:5151–5156[PubMed]
    [Google Scholar]
  59. Servin A. L..( 2004;). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev28:405–440 [CrossRef][PubMed]
    [Google Scholar]
  60. Sgouras D., Maragkoudakis P., Petraki K., Martinez-Gonzalez B., Eriotou E., Michopoulos S., Kalantzopoulos G., Tsakalidou E., Mentis A..( 2004;). In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl Environ Microbiol70:518–526 [CrossRef][PubMed]
    [Google Scholar]
  61. Sgouras D. N., Panayotopoulou E. G., Martinez-Gonzalez B., Petraki K., Michopoulos S., Mentis A..( 2005;). Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice. Clin Diagn Lab Immunol12:1378–1386[PubMed]
    [Google Scholar]
  62. She F. F., Su D. H., Lin J. Y., Zhou L. Y..( 2001;). Virulence and potential pathogenicity of coccoid Helicobacter pylori induced by antibiotics. World J Gastroenterol7:254–258[PubMed]
    [Google Scholar]
  63. Shen S., Fang F. C..( 2012;). Integrated stress responses in Salmonella.. Int J Food Microbiol152:75–81 [CrossRef][PubMed]
    [Google Scholar]
  64. Sojka M., Sayers A. R., Woodward M. J..( 2001;). Analysis of expression of flagella by Salmonella enterica serotype Typhimurium by monoclonal antibodies recognising both phase specific and common epitopes. Vet Microbiol78:61–77 [CrossRef][PubMed]
    [Google Scholar]
  65. Sörberg M., Hanberger H., Nilsson M., Björkman A., Nilsson L. E..( 1998;). Risk of development of in vitro resistance to amoxicillin, clarithromycin, and metronidazole in Helicobacter pylori.. Antimicrob Agents Chemother42:1222–1228[PubMed]
    [Google Scholar]
  66. Spengler G., Molnar A., Klausz G., Mandi Y., Kawase M., Motohashi N., Molnar J..( 2004;). Inhibitory action of a new proton pump inhibitor, trifluoromethyl ketone derivative, against the motility of clarithromycin-susceptible and -resistant Helicobacter pylori.. Int J Antimicrob Agents23:631–633 [CrossRef][PubMed]
    [Google Scholar]
  67. Stecher B., Hapfelmeier S., Müller C., Kremer M., Stallmach T., Hardt W. D..( 2004;). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun72:4138–4150 [CrossRef][PubMed]
    [Google Scholar]
  68. Sycuro L. K., Wyckoff T. J., Biboy J., Born P., Pincus Z., Vollmer W., Salama N. R..( 2012;). Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog8:e1002603 [CrossRef][PubMed]
    [Google Scholar]
  69. Tsutsui N., Taneike I., Ohara T., Goshi S., Kojio S., Iwakura N., Matsumaru H., Wakisaka-Saito N., Zhang H. M., Yamamoto T..( 2000;). A novel action of the proton pump inhibitor rabeprazole and its thioether derivative against the motility of Helicobacter pylori.. Antimicrob Agents Chemother44:3069–3073 [CrossRef][PubMed]
    [Google Scholar]
  70. Turner L., Ryu W. S., Berg H. C..( 2000;). Real-time imaging of fluorescent flagellar filaments. J Bacteriol182:2793–2801 [CrossRef][PubMed]
    [Google Scholar]
  71. van Asten F. J., Hendriks H. G., Koninkx J. F., van Dijk J. E..( 2004;). Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int J Med Microbiol294:395–399 [CrossRef][PubMed]
    [Google Scholar]
  72. Wang J., Wang W. H., Li J., Liu F. X..( 2010;). Celecoxib inhibits Helicobacter pylori colonization-related factors. World J Gastroenterol16:846–853[PubMed]
    [Google Scholar]
  73. Winter S. E., Thiennimitr P., Nuccio S. P., Haneda T., Winter M. G., Wilson R. P., Russell J. M., Henry T., Tran Q. T..& other authors ( 2009;). Contribution of flagellin pattern recognition to intestinal inflammation during Salmonella enterica serotype Typhimurium infection. Infect Immun77:1904–1916 [CrossRef][PubMed]
    [Google Scholar]
  74. Worku M. L., Sidebotham R. L., Karim Q. N..( 1999a;). Effects of ranitidine bismuth citrate on Helicobacter pylori motility, morphology and survival. Aliment Pharmacol Ther13:753–760 [CrossRef][PubMed]
    [Google Scholar]
  75. Worku M. L., Sidebotham R. L., Walker M. M., Keshavarz T., Karim Q. N..( 1999b;). The relationship between Helicobacter pylori motility, morphology and phase of growth: implications for gastric colonization and pathology. Microbiology145:2803–2811[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067678-0
Loading
/content/journal/micro/10.1099/mic.0.067678-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error