1887

Abstract

The holin–endolysin system is used by double-stranded DNA phages to lyse their bacterial hosts at the terminal stage of the phage reproduction cycle. Endolysins are proteins with one of several muralytic activities able to digest the bacterial cell wall for phage progeny release. However, the functions of thermophilic bacteriophage endolysin in host lysis have not been extensively investigated. In this study, the roles of the endolysin of a thermophilic bacteriophage, GVE2, from a deep-sea hydrothermal vent, which could infect sp. E263 at high temperatures, were characterized. The results showed that GVE2 could lead to lysis of host cells. The confocal microscopy data showed that GFP–endolysin aggregated in GVE2-infected sp. E263 cells, showing the involvement of endolysin in the lysis process at high temperatures. The results revealed that the GVE2 endolysin and holin interacted directly. It was found that the endolysin could interact with the host protein ABC transporter, suggesting that host proteins might participate in the regulation of the lysis process. Therefore, our study presents a novel insight into the mechanism of the lysis process of a thermophilic bacterium by its phage at high temperatures, which should be helpful in revealing the roles of thermophilic bacteriophages in the biosphere of deep-sea hydrothermal vents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067611-0
2013-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1597.html?itemId=/content/journal/micro/10.1099/mic.0.067611-0&mimeType=html&fmt=ahah

References

  1. Baase W. A., Liu L., Tronrud D. E., Matthews B. W.. ( 2010;). Lessons from the lysozyme of phage T4. . Protein Sci 19:, 631–641. [CrossRef][PubMed]
    [Google Scholar]
  2. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C.. ( 1994;). Green fluorescent protein as a marker for gene expression. . Science 263:, 802–805. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang C. Y., Nam K., Young R.. ( 1995;). S gene expression and the timing of lysis by bacteriophage lambda. . J Bacteriol 177:, 3283–3294.[PubMed]
    [Google Scholar]
  4. Dewey J. S., Savva C. G., White R. L., Vitha S., Holzenburg A., Young R.. ( 2010;). Micron-scale holes terminate the phage infection cycle. . Proc Natl Acad Sci U S A 107:, 2219–2223. [CrossRef][PubMed]
    [Google Scholar]
  5. Igarashi Y., Aoki K. F., Mamitsuka H., Kuma K.-i., Kanehisa M.. ( 2004;). The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. . Mol Biol Evol 21:, 2149–2160. [CrossRef][PubMed]
    [Google Scholar]
  6. Karl D. M.. ( 1995;). Ecology of free-living, hydrothermal vent microbial communities. . In The Microbiology of Deep-Sea Hydrothermal Vents, pp. 35–124. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  7. Kiss C., Temirov J., Chasteen L., Waldo G. S., Bradbury A. R. M.. ( 2009;). Directed evolution of an extremely stable fluorescent protein. . Protein Eng Des Sel 22:, 313–323. [CrossRef][PubMed]
    [Google Scholar]
  8. Kuty G. F., Xu M., Struck D. K., Summer E. J., Young R.. ( 2010;). Regulation of a phage endolysin by disulfide caging. . J Bacteriol 192:, 5682–5687. [CrossRef][PubMed]
    [Google Scholar]
  9. Liu B., Zhang X.. ( 2008;). Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. . Appl Microbiol Biotechnol 80:, 697–707. [CrossRef][PubMed]
    [Google Scholar]
  10. Liu B., Wu S., Song Q., Zhang X., Xie L.. ( 2006;). Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. . Curr Microbiol 53:, 163–166. [CrossRef][PubMed]
    [Google Scholar]
  11. Moussatova A., Kandt C., O’Mara M. L., Tieleman D. P.. ( 2008;). ATP-binding cassette transporters in Escherichia coli.. Biochim Biophys Acta 1778:, 1757–1771. [CrossRef][PubMed]
    [Google Scholar]
  12. Novotny R., Berger H., Schinko T., Messner P., Schäffer C., Strauss J.. ( 2008;). A temperature-sensitive expression system based on the Geobacillus stearothermophilus NRS 2004/3a sgsE surface-layer gene promoter. . Biotechnol Appl Biochem 49:, 35–40. [CrossRef][PubMed]
    [Google Scholar]
  13. Ortmann A. C., Suttle C. A.. ( 2005;). High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. . Deep Sea Res Part I Oceanogr Res Pap 52:, 1515–1527. [CrossRef]
    [Google Scholar]
  14. Pang T., Park T., Young R.. ( 2010;). Mutational analysis of the S21 pinholin. . Mol Microbiol 76:, 68–77. [CrossRef][PubMed]
    [Google Scholar]
  15. Park T., Struck D. K., Deaton J. F., Young R.. ( 2006;). Topological dynamics of holins in programmed bacterial lysis. . Proc Natl Acad Sci U S A 103:, 19713–19718. [CrossRef][PubMed]
    [Google Scholar]
  16. Reysenbach A. L., Shock E.. ( 2002;). Merging genomes with geochemistry in hydrothermal ecosystems. . Science 296:, 1077–1082. [CrossRef][PubMed]
    [Google Scholar]
  17. Schägger H., Von Jagow G.. ( 1987;). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. . Anal Biochem 166:, 368–379. [CrossRef][PubMed]
    [Google Scholar]
  18. Schmelcher M., Waldherr F., Loessner M. J.. ( 2012;). Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. . Appl Microbiol Biotechnol 93:, 633–643. [CrossRef][PubMed]
    [Google Scholar]
  19. Steiner M., Lubitz W., Bläsi U.. ( 1993;). The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage phi 29 encodes the functional homolog of lambda S protein. . J Bacteriol 175:, 1038–1042.[PubMed]
    [Google Scholar]
  20. Summer E. J., Berry J., Tran T. A., Niu L., Struck D. K., Young R.. ( 2007;). Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. . J Mol Biol 373:, 1098–1112. [CrossRef][PubMed]
    [Google Scholar]
  21. Sun Q., Kuty G. F., Arockiasamy A., Xu M., Young R., Sacchettini J. C.. ( 2009;). Regulation of a muralytic enzyme by dynamic membrane topology. . Nat Struct Mol Biol 16:, 1192–1194. [CrossRef][PubMed]
    [Google Scholar]
  22. Tran T. A., Struck D. K., Young R.. ( 2005;). Periplasmic domains define holin-antiholin interactions in T4 lysis inhibition. . J Bacteriol 187:, 6631–6640. [CrossRef][PubMed]
    [Google Scholar]
  23. Tran T. A., Struck D. K., Young R.. ( 2007;). The T4 RI antiholin has an N-terminal signal anchor release domain that targets it for degradation by DegP. . J Bacteriol 189:, 7618–7625. [CrossRef][PubMed]
    [Google Scholar]
  24. Tsien R. Y.. ( 1998;). The green fluorescent protein. . Annu Rev Biochem 67:, 509–544. [CrossRef][PubMed]
    [Google Scholar]
  25. Walmagh M., Briers Y., dos Santos S. B., Azeredo J., Lavigne R.. ( 2012;). Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. . PLoS ONE 7:, e36991. [CrossRef][PubMed]
    [Google Scholar]
  26. Wang I. N., Smith D. L., Young R.. ( 2000;). Holins: the protein clocks of bacteriophage infections. . Annu Rev Microbiol 54:, 799–825. [CrossRef][PubMed]
    [Google Scholar]
  27. Wang I. N., Deaton J., Young R.. ( 2003;). Sizing the holin lesion with an endolysin-β-galactosidase fusion. . J Bacteriol 185:, 779–787. [CrossRef][PubMed]
    [Google Scholar]
  28. Wei D., Zhang X.. ( 2010;). Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. . J Virol 84:, 2365–2373. [CrossRef][PubMed]
    [Google Scholar]
  29. White R., Chiba S., Pang T., Dewey J. S., Savva C. G., Holzenburg A., Pogliano K., Young R.. ( 2011;). Holin triggering in real time. . Proc Natl Acad Sci U S A 108:, 798–803. [CrossRef][PubMed]
    [Google Scholar]
  30. Xu M., Struck D. K., Deaton J., Wang I. N., Young R.. ( 2004;). A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. . Proc Natl Acad Sci U S A 101:, 6415–6420. [CrossRef][PubMed]
    [Google Scholar]
  31. Xu M., Arulandu A., Struck D. K., Swanson S., Sacchettini J. C., Young R.. ( 2005;). Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. . Science 307:, 113–117. [CrossRef][PubMed]
    [Google Scholar]
  32. Ye T., Zhang X.. ( 2008;). Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. . Appl Microbiol Biotechnol 78:, 635–641. [CrossRef][PubMed]
    [Google Scholar]
  33. Young R.. ( 1992;). Bacteriophage lysis: mechanism and regulation. . Microbiol Rev 56:, 430–481.[PubMed]
    [Google Scholar]
  34. Young I., Wang I. N., Roof W. D.. ( 2000;). Phages will out: strategies of host cell lysis. . Trends Microbiol 8:, 120–128. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067611-0
Loading
/content/journal/micro/10.1099/mic.0.067611-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error