1887

Abstract

There is limited understanding of the molecular basis of virulence in the important avian pathogen . To define genes that may be involved in colonization of chickens, a collection of mutants of the virulent Ap3AS strain of were generated by signature-tagged transposon mutagenesis. The collection included mutants with single insertions in the genes encoding the adhesin GapA and the cytadherence-related protein CrmA, and Western blotting confirmed that these mutants did not express these proteins. In two separate screenings, two GapA-deficient mutants (ST mutants 02-1 and 06-1) were occasionally recovered from birds, suggesting that GapA expression may not always be essential for persistence of strain Ap3AS. CrmA-deficient ST mutant 33-1 colonized birds poorly and had reduced virulence, indicating that CrmA was a significant virulence factor, but was not absolutely essential for colonization. ST mutant 04-1 contained a single transposon insertion in F, a predicted ABC sugar transport permease, and could not be reisolated even when inoculated by itself into a group of birds, suggesting that expression of MalF was essential for persistence of strain Ap3AS in infected birds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067553-0
2013-07-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1459.html?itemId=/content/journal/micro/10.1099/mic.0.067553-0&mimeType=html&fmt=ahah

References

  1. Abu-Zahr M. N., Butler M..( 1978;). Ultrastructural features of Mycoplasma gallisepticum in tracheal explants under transmission and stereoscan electron microscopy. Res Vet Sci24:248–253[PubMed]
    [Google Scholar]
  2. Austermuhle M. I., Hall J. A., Klug C. S., Davidson A. L..( 2004;). Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport. J Biol Chem279:28243–28250 [CrossRef][PubMed]
    [Google Scholar]
  3. Autret N., Charbit A..( 2005;). Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev29:703–717 [CrossRef][PubMed]
    [Google Scholar]
  4. Balish M. F., Krause D. C..( 2005;). Mycoplasma attachment organelle and cell division. Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control189–238 Blanchard A., Browning G. F.. Wymondham: Horizon Bioscience;
    [Google Scholar]
  5. Balish M. F., Hahn T. W., Popham P. L., Krause D. C..( 2001;). Stability of Mycoplasma pneumoniae cytadherence-accessory protein HMW1 correlates with its association with the triton shell. J Bacteriol183:3680–3688 [CrossRef][PubMed]
    [Google Scholar]
  6. Baseman J. B., Morrison-Plummer J., Drouillard D., Puleo-Scheppke B., Tryon V. V., Holt S. C..( 1987;). Identification of a 32-kilodalton protein of Mycoplasma pneumoniae associated with hemadsorption. Isr J Med Sci23:474–479[PubMed]
    [Google Scholar]
  7. Beard C. W..( 1989;). Serologic procedures. A Laboratory Manual for Isolation and Identification of Avian Pathogens, 3rd edn.192–200 Purchase H. G., Arp L. H., Domermuth C. H., Pearson J. E.. Dubuque, IA: Kendall-Hunt Publishing;
    [Google Scholar]
  8. Boyle, J. S. & Morrow, C. J. (1994).10th International Congress of the International Organization for Mycoplasmology Bordeaux
  9. Byrne M. E., Rouch D. A., Skurray R. A..( 1989;). Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene81:361–367 [CrossRef][PubMed]
    [Google Scholar]
  10. Caldelari I., Palmer T., Sargent F..( 2008;). Escherichia coli tat mutant strains are able to transport maltose in the absence of an active malE gene. Arch Microbiol189:597–604 [CrossRef][PubMed]
    [Google Scholar]
  11. Cui J., Qasim S., Davidson A. L..( 2010;). Uncoupling substrate transport from ATP hydrolysis in the Escherichia coli maltose transporter. J Biol Chem285:39986–39993 [CrossRef][PubMed]
    [Google Scholar]
  12. Darwin A. J., Miller V. L..( 1999;). Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol Microbiol32:51–62 [CrossRef][PubMed]
    [Google Scholar]
  13. Daus M. L., Landmesser H., Schlosser A., Müller P., Herrmann A., Schneider E..( 2006;). ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter. J Biol Chem281:3856–3865 [CrossRef][PubMed]
    [Google Scholar]
  14. Daus M. L., Berendt S., Wuttge S., Schneider E..( 2007;). Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle. Mol Microbiol66:1107–1122 [CrossRef][PubMed]
    [Google Scholar]
  15. Daus M. L., Grote M., Schneider E..( 2009;). The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle. J Bacteriol191:754–761 [CrossRef][PubMed]
    [Google Scholar]
  16. Franzoso G., Hu P. C., Meloni G. A., Barile M. F..( 1993;). The immunodominant 90-kilodalton protein is localized on the terminal tip structure of Mycoplasma pneumoniae. Infect Immun61:1523–1530[PubMed]
    [Google Scholar]
  17. Fuller T. E., Kennedy M. J., Lowery D. E..( 2000;). Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog29:25–38 [CrossRef][PubMed]
    [Google Scholar]
  18. Garmory H. S., Titball R. W..( 2004;). ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun72:6757–6763 [CrossRef][PubMed]
    [Google Scholar]
  19. Gaunson J. E., Philip C. J., Whithear K. G., Browning G. F..( 2000;). Lymphocytic infiltration in the chicken trachea in response to Mycoplasma gallisepticum infection. Microbiology146:1223–1229[PubMed]
    [Google Scholar]
  20. Gaunson J. E., Philip C. J., Whithear K. G., Browning G. F..( 2006a;). The cellular immune response in the tracheal mucosa to Mycoplasma gallisepticum in vaccinated and unvaccinated chickens in the acute and chronic stages of disease. Vaccine24:2627–2633 [CrossRef][PubMed]
    [Google Scholar]
  21. Gaunson J. E., Philip C. J., Whithear K. G., Browning G. F..( 2006b;). Age related differences in the immune response to vaccination and infection with Mycoplasma gallisepticum. Vaccine24:1687–1692 [CrossRef][PubMed]
    [Google Scholar]
  22. Goh M. S., Gorton T. S., Forsyth M. H., Troy K. E., Geary S. J..( 1998;). Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin (GapA). Microbiology144:2971–2978 [CrossRef][PubMed]
    [Google Scholar]
  23. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W..( 1995;). Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403 [CrossRef][PubMed]
    [Google Scholar]
  24. Hedreyda C. T., Lee K. K., Krause D. C..( 1993;). Transformation of Mycoplasma pneumoniae with Tn4001 by electroporation. Plasmid30:170–175 [CrossRef][PubMed]
    [Google Scholar]
  25. Higgins C. F..( 1992;). ABC transporters: from microorganisms to man. Annu Rev Cell Biol8:67–113 [CrossRef][PubMed]
    [Google Scholar]
  26. Higgins P. A., Whithear K. G..( 1986;). Detection and differentiation of Mycoplasma gallisepticum and M. synoviae antibodies in chicken serum using enzyme-linked immunosorbent assay. Avian Dis30:160–168 [CrossRef][PubMed]
    [Google Scholar]
  27. Hnatow L. L., Keeler C. L. Jr, Tessmer L. L., Czymmek K., Dohms J. E..( 1998;). Characterization of MGC2, a Mycoplasma gallisepticum cytadhesin with homology to the Mycoplasma pneumoniae 30-kilodalton protein P30 and Mycoplasma genitalium P32. Infect Immun66:3436–3442[PubMed]
    [Google Scholar]
  28. Hu P. C., Collier A. M., Baseman J. B..( 1977;). Surface parasitism by Mycoplasma pneumoniae of respiratory epithelium. J Exp Med145:1328–1343 [CrossRef][PubMed]
    [Google Scholar]
  29. Hudson P., Gorton T. S., Papazisi L., Cecchini K., Frasca S. Jr, Geary S. J..( 2006;). Identification of a virulence-associated determinant, dihydrolipoamide dehydrogenase (lpd), in Mycoplasma gallisepticum through in vivo screening of transposon mutants. Infect Immun74:931–939 [CrossRef][PubMed]
    [Google Scholar]
  30. Jacso T., Grote M., Daus M. L., Schmieder P., Keller S., Schneider E., Reif B..( 2009;). Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE. Biochemistry48:2216–2225 [CrossRef][PubMed]
    [Google Scholar]
  31. Jones P. M., George A. M..( 2004;). The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci61:682–699 [CrossRef][PubMed]
    [Google Scholar]
  32. Jordan F. T. W..( 1979;). Human and animal mycoplasmas. The Mycoplasmasvol. II1–48 Tully J. G., Whitcomb R. F.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  33. ).Mycoplasma gallisepticum15th Congress of the International Organisation for Mycoplasmology
  34. Keeler C. L. Jr, Hnatow L. L., Whetzel P. L., Dohms J. E..( 1996;). Cloning and characterization of a putative cytadhesin gene (mgc1) from Mycoplasma gallisepticum. Infect Immun64:1541–1547[PubMed]
    [Google Scholar]
  35. Knudtson K. L., Minion F. C..( 1993;). Construction of Tn4001lac derivatives to be used as promoter probe vectors in mycoplasmas. Gene137:217–222 [CrossRef][PubMed]
    [Google Scholar]
  36. Layh-Schmitt G., Herrmann R..( 1994;). Spatial arrangement of gene products of the P1 operon in the membrane of Mycoplasma pneumoniae. Infect Immun62:974–979[PubMed]
    [Google Scholar]
  37. Layh-Schmitt G., Hilbert H., Pirkl E..( 1995;). A spontaneous hemadsorption-negative mutant of Mycoplasma pneumoniae exhibits a truncated adhesin-related 30-kilodalton protein and lacks the cytadherence-accessory protein HMW1. J Bacteriol177:843–846[PubMed]
    [Google Scholar]
  38. Layh-Schmitt G., Podtelejnikov A., Mann M..( 2000;). Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. Microbiology146:741–747[PubMed]
    [Google Scholar]
  39. Mannering D. E., Sharma S., Davidson A. L..( 2001;). Demonstration of conformational changes associated with activation of the maltose transport complex. J Biol Chem276:12362–12368 [CrossRef][PubMed]
    [Google Scholar]
  40. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W..( 1997;). Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol26:399–407 [CrossRef][PubMed]
    [Google Scholar]
  41. Meynell G. G., Meynell E..( 1970;). Theory and Practice in Experimental Bacteriology, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  42. Morrison-Plummer J., Lazzell A., Baseman J. B..( 1987;). Shared epitopes between Mycoplasma pneumoniae major adhesin protein P1 and a 140-kilodalton protein of Mycoplasma genitalium. Infect Immun55:49–56[PubMed]
    [Google Scholar]
  43. Mudahi-Orenstein S., Levisohn S., Geary S. J., Yogev D..( 2003;). Cytadherence-deficient mutants of Mycoplasma gallisepticum generated by transposon mutagenesis. Infect Immun71:3812–3820 [CrossRef][PubMed]
    [Google Scholar]
  44. Nikaido H..( 1994;). Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett346:55–58 [CrossRef][PubMed]
    [Google Scholar]
  45. Noll K. M., Lapierre P., Gogarten J. P., Nanavati D. M..( 2008;). Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales. BMC Evol Biol8:7 [CrossRef][PubMed]
    [Google Scholar]
  46. Noormohammadi A. H., Markham P. F., Whithear K. G., Walker I. D., Gurevich V. A., Ley D. H., Browning G. F..( 1997;). Mycoplasma synoviae has two distinct phase-variable major membrane antigens, one of which is a putative hemagglutinin. Infect Immun65:2542–2547[PubMed]
    [Google Scholar]
  47. Nunoya T., Tajima M., Yagihashi T., Sannai S..( 1987;). Evaluation of respiratory lesions in chickens induced by Mycoplasma gallisepticum. Nippon Juigaku Zasshi49:621–629 [CrossRef][PubMed]
    [Google Scholar]
  48. Papazisi L., Troy K. E., Gorton T. S., Liao X., Geary S. J..( 2000;). Analysis of cytadherence-deficient, GapA-negative Mycoplasma gallisepticum strain R. Infect Immun68:6643–6649 [CrossRef][PubMed]
    [Google Scholar]
  49. Papazisi L., Frasca S. Jr, Gladd M., Liao X., Yogev D., Geary S. J..( 2002;). GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun70:6839–6845 [CrossRef][PubMed]
    [Google Scholar]
  50. Papazisi L., Gorton T. S., Kutish G., Markham P. F., Browning G. F., Nguyen D. K., Swartzell S., Madan A., Mahairas G., Geary S. J..( 2003;). The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology149:2307–2316 [CrossRef][PubMed]
    [Google Scholar]
  51. Pearson W. R., Lipman D. J..( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448 [CrossRef][PubMed]
    [Google Scholar]
  52. Pedersen P. L..( 2005;). Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr37:349–357 [CrossRef][PubMed]
    [Google Scholar]
  53. Razin S., Yogev D., Naot Y..( 1998;). Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev62:1094–1156[PubMed]
    [Google Scholar]
  54. Schmitt L., Tampé R..( 2002;). Structure and mechanism of ABC transporters. Curr Opin Struct Biol12:754–760 [CrossRef][PubMed]
    [Google Scholar]
  55. Seto S., Layh-Schmitt G., Kenri T., Miyata M..( 2001;). Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol183:1621–1630 [CrossRef][PubMed]
    [Google Scholar]
  56. Sharma S., Davis J. A., Ayvaz T., Traxler B., Davidson A. L..( 2005;). Functional reassembly of the Escherichia coli maltose transporter following purification of a MalF-MalG subassembly. J Bacteriol187:2908–2911 [CrossRef][PubMed]
    [Google Scholar]
  57. Shil P. K., Kanci A., Browning G. F., Marenda M. S., Noormohammadi A. H., Markham P. F..( 2011;). GapA+ Mycoplasma gallisepticum ts-11 has improved vaccine characteristics. Microbiology157:1740–1749 [CrossRef][PubMed]
    [Google Scholar]
  58. Soeripto, Whithear K. G., Cottew G. S., Harrigan K. E..( 1989;). Virulence and transmissibility of Mycoplasma gallisepticum. Aust Vet J66:65–72 [CrossRef][PubMed]
    [Google Scholar]
  59. Sperker B., Hu P., Herrmann R..( 1991;). Identification of gene products of the P1 operon of Mycoplasma pneumoniae. Mol Microbiol5:299–306 [CrossRef][PubMed]
    [Google Scholar]
  60. Wada A..( 2000;). An improved method for purifying bacterial genomic DNAs for direct sequencing by capillary automated sequencer. Tech Tips Online6:12–14 [CrossRef]
    [Google Scholar]
  61. Winner F., MarKova I., Much P., Lugmair A., Siebert-Gulle K., Vogl G., Rosengarten R., Citti C..( 2003;). Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect Immun71:1265–1273 [CrossRef][PubMed]
    [Google Scholar]
  62. Whithear K. G..( 1993;). Avian mycoplasmosis. Australian Standard Diagnostic Techniques for Animal Diseases Corner L. A., Bagust T. J.. East Melbourne: CSIRO for the standing committee on agriculture and resource management;
    [Google Scholar]
  63. Whithear K. G., Bowtell D. D., Ghiocas E., Hughes K. L..( 1983;). Evaluation and use of a micro-broth dilution procedure for testing sensitivity of fermentative avian mycoplasmas to antibiotics. Avian Dis27:937–949 [CrossRef][PubMed]
    [Google Scholar]
  64. Whithear K. G., Harrigan K. E., Kleven S. H..( 1996;). Standardized method of aerosol challenge for testing the efficacy of Mycoplasma gallisepticum vaccines. Avian Dis40:654–660 [CrossRef][PubMed]
    [Google Scholar]
  65. Yoder H. W. Jr, Hofstad M. S..( 1964;). Characterization of avian mycoplasma. Avian Dis8:481–512 [CrossRef]
    [Google Scholar]
  66. Young J., Holland I. B..( 1999;). ABC transporters: bacterial exporters-revisited five years on. Biochim Biophys Acta1461:177–200 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067553-0
Loading
/content/journal/micro/10.1099/mic.0.067553-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error