1887

Abstract

Prokaryotic DNA-binding transcription factors (TFs) bind in close vicinity of the promoter and regulate transcription through interplay with the DNA-dependent RNA polymerase. Promoters associated with the genes involved in stress response have recently been found to be under the control of multiple regulators, each monitoring one specific environmental condition or factor. In order to identify TFs involved in regulation of one specific promoter, we have developed a PS-TF (promoter-specific TF) screening system, in which the binding of purified TFs to a test promoter was analysed by gel-shift assay. This PS-TF screening system was applied for detection of TFs involved in regulation of the promoter for the gene encoding the master regulator of cell division and quorum sensing. After screening of a total of 191 purified TFs (two-thirds of the predicted TFs), at least 15 TFs have been identified to bind to the promoter, including five two-component system (TCS) regulators, ArcA, CpxR, OmpR, RcsB and TorR. In this study, we focus on these five TFs for detailed analysis of their regulatory roles . Under normal growth conditions in LB medium, all these TFs repressed the promoter and the repression levels correlated with their intracellular levels. Taken together, we propose that these TCS regulators repress transcription of the gene, ultimately leading to suppression of cell division.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067538-0
2013-12-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2501.html?itemId=/content/journal/micro/10.1099/mic.0.067538-0&mimeType=html&fmt=ahah

References

  1. Ahmer B. M.. ( 2004;). Cell-to-cell signalling in Escherichia coli and Salmonella enterica. . Mol Microbiol 52:, 933–945. [CrossRef][PubMed]
    [Google Scholar]
  2. Ahmer B. M., van Reeuwijk J., Timmers C. D., Valentine P. J., Heffron F.. ( 1998;). Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. . J Bacteriol 180:, 1185–1193.[PubMed]
    [Google Scholar]
  3. Aiba H., Adhya S., de Crombrugghe B.. ( 1981;). Evidence for two functional gal promoters in intact Escherichia coli. . J Biol Chem 256:, 11905–11910.[PubMed]
    [Google Scholar]
  4. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A.. ( 1999;). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. . J Bacteriol 181:, 6361–6370.[PubMed]
    [Google Scholar]
  5. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef][PubMed]
    [Google Scholar]
  6. Ballesteros M., Kusano S., Ishihama A., Vicente M.. ( 1998;). The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB-ftsA region. . Mol Microbiol 30:, 419–430. [CrossRef][PubMed]
    [Google Scholar]
  7. Bassler B. L.. ( 2002;). Small talk. Cell-to-cell communication in bacteria. . Cell 109:, 421–424. [CrossRef][PubMed]
    [Google Scholar]
  8. Bordi C., Théraulaz L., Méjean V., Jourlin-Castelli C.. ( 2003;). Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. . Mol Microbiol 48:, 211–223. [CrossRef][PubMed]
    [Google Scholar]
  9. Burton N. A., Johnson M. D., Antczak P., Robinson A., Lund P. A.. ( 2010;). Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. . J Mol Biol 401:, 726–742. [CrossRef][PubMed]
    [Google Scholar]
  10. Carballès F., Bertrand C., Bouché J. P., Cam K.. ( 1999;). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. . Mol Microbiol 34:, 442–450. [CrossRef][PubMed]
    [Google Scholar]
  11. Cherepanov P. P., Wackernagel W.. ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. . Gene 158:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  12. Close D. M., Ripp S., Sayler G. S.. ( 2009;). Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. . Sensors (Basel) 9:, 9147–9174. [CrossRef][PubMed]
    [Google Scholar]
  13. Danese P. N., Silhavy T. J.. ( 1997;). The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. . Genes Dev 11:, 1183–1193. [CrossRef][PubMed]
    [Google Scholar]
  14. de la Fuente A., Palacios P., Vicente M.. ( 2001;). Transcription of the Escherichia coli dcw cluster: evidence for distal upstream transcripts being involved in the expression of the downstream ftsZ gene. . Biochimie 83:, 109–115. [CrossRef][PubMed]
    [Google Scholar]
  15. Dorel C., Lejeune P., Rodrigue A.. ( 2006;). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities. ? Res Microbiol 157:, 306–314. [CrossRef][PubMed]
    [Google Scholar]
  16. Dyszel J. L., Soares J. A., Swearingen M. C., Lindsay A., Smith J. N., Ahmer B. M. M.. ( 2010;). E. coli K-12 and EHEC genes regulated by SdiA. . PLoS ONE 5:, e8946. [CrossRef][PubMed]
    [Google Scholar]
  17. Egger L. A., Park H., Inouye M.. ( 1997;). Signal transduction via the histidyl-aspartyl phosphorelay. . Genes Cells 2:, 167–184. [CrossRef][PubMed]
    [Google Scholar]
  18. Fuqua C., Winans S. C., Greenberg E. P.. ( 1996;). Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. . Annu Rev Microbiol 50:, 727–751. [CrossRef][PubMed]
    [Google Scholar]
  19. García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B.. ( 1994;). The superfamily of heme-copper respiratory oxidases. . J Bacteriol 176:, 5587–5600.[PubMed]
    [Google Scholar]
  20. García-Lara J., Shang L. H., Rothfield L. I.. ( 1996;). An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli. . J Bacteriol 178:, 2742–2748.[PubMed]
    [Google Scholar]
  21. Goh E.-B., Siino D. F., Igo M. M.. ( 2004;). The Escherichia coli tppB (ydgR) gene represents a new class of OmpR-regulated genes. . J Bacteriol 186:, 4019–4024. [CrossRef][PubMed]
    [Google Scholar]
  22. Gunsalus R. P., Park S. J.. ( 1994;). Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. . Res Microbiol 145:, 437–450. [CrossRef][PubMed]
    [Google Scholar]
  23. Gupte G., Woodward C., Stout V.. ( 1997;). Isolation and characterization of rcsB mutations that affect colonic acid capsule synthesis in Escherichia coli K-12. . J Bacteriol 179:, 4328–4335.[PubMed]
    [Google Scholar]
  24. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B. L.. & other authors ( 2006;). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. . Mol Syst Biol 2:, 0007. [CrossRef][PubMed]
    [Google Scholar]
  25. Hirakawa H., Nishino K., Hirata T., Yamaguchi A.. ( 2003;). Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. . J Bacteriol 185:, 1851–1856. [CrossRef][PubMed]
    [Google Scholar]
  26. Ishihama A.. ( 2000;). Functional modulation of Escherichia coli RNA polymerase. . Annu Rev Microbiol 54:, 499–518. [CrossRef][PubMed]
    [Google Scholar]
  27. Ishihama A.. ( 2010;). Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. . FEMS Microbiol Rev 34:, 628–645.[PubMed]
    [Google Scholar]
  28. Ishihama A.. ( 2012;). Prokaryotic genome regulation: a revolutionary paradigm. . Proc Jpn Acad, Ser B, Phys Biol Sci 88:, 485–508. [CrossRef][PubMed]
    [Google Scholar]
  29. Iuchi S., Weiner L.. ( 1996;). Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. . J Biochem 120:, 1055–1063. [CrossRef][PubMed]
    [Google Scholar]
  30. Jishage M., Ishihama A.. ( 1995;). Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of σ70 and σ38. . J Bacteriol 177:, 6832–6835.[PubMed]
    [Google Scholar]
  31. Jishage M., Ishihama A.. ( 1997;). Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. . J Bacteriol 179:, 959–963.[PubMed]
    [Google Scholar]
  32. Jishage M., Iwata A., Ueda S., Ishihama A.. ( 1996;). Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. . J Bacteriol 178:, 5447–5451.[PubMed]
    [Google Scholar]
  33. Jubelin G., Vianney A., Beloin C., Ghigo J. M., Lazzaroni J. C., Lejeune P., Dorel C.. ( 2005;). CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. . J Bacteriol 187:, 2038–2049. [CrossRef][PubMed]
    [Google Scholar]
  34. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A.. & other authors ( 2013;). EcoCyc: fusing model organism databases with systems biology. . Nucleic Acids Res 41: (Database issue), D605–D612. [CrossRef][PubMed]
    [Google Scholar]
  35. Kitagawa M., Ara T., Arifuzzaman M., Ioka-Nakamichi T., Inamoto E., Toyonaga H., Mori H.. ( 2006;). Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. . DNA Res 12:, 291–299. [CrossRef][PubMed]
    [Google Scholar]
  36. Lee J., Jayaraman A., Wood T. K.. ( 2007;). Indole is an inter-species biofilm signal mediated by SdiA. . BMC Microbiol 7:, 42. [CrossRef][PubMed]
    [Google Scholar]
  37. Lee J., Maeda T., Hong S. H., Wood T. K.. ( 2009;). Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. . Appl Environ Microbiol 75:, 1703–1716. [CrossRef][PubMed]
    [Google Scholar]
  38. Maeda H., Jishage M., Nomura T., Fujita N., Ishihama A.. ( 2000;). Two extracytoplasmic function sigma subunits, sigma(E) and sigma(FecI), of Escherichia coli: promoter selectivity and intracellular levels. . J Bacteriol 182:, 1181–1184. [CrossRef][PubMed]
    [Google Scholar]
  39. Majdalani N., Gottesman S.. ( 2005;). The Rcs phosphorelay: a complex signal transduction system. . Annu Rev Microbiol 59:, 379–405. [CrossRef][PubMed]
    [Google Scholar]
  40. Michael B., Smith J. N., Swift S., Heffron F., Ahmer B. M.. ( 2001;). SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. . J Bacteriol 183:, 5733–5742. [CrossRef][PubMed]
    [Google Scholar]
  41. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  42. Mouslim C., Latifi T., Groisman E. A.. ( 2003;). Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. . J Biol Chem 278:, 50588–50595. [CrossRef][PubMed]
    [Google Scholar]
  43. Ogasawara H., Hasegawa A., Kanda E., Miki T., Yamamoto K., Ishihama A.. ( 2007a;). Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. . J Bacteriol 189:, 4791–4799. [CrossRef][PubMed]
    [Google Scholar]
  44. Ogasawara H., Ishida Y., Yamada K., Yamamoto K., Ishihama A.. ( 2007b;). PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. . J Bacteriol 189:, 5534–5541. [CrossRef][PubMed]
    [Google Scholar]
  45. Ogasawara H., Yamamoto K., Ishihama A.. ( 2010a;). Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. . FEMS Microbiol Lett 312:, 160–168. [CrossRef][PubMed]
    [Google Scholar]
  46. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A.. ( 2010b;). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. . Microbiology 156:, 2470–2483. [CrossRef][PubMed]
    [Google Scholar]
  47. Ogasawara H., Yamamoto K., Ishihama A.. ( 2011;). Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. . J Bacteriol 193:, 2587–2597. [CrossRef][PubMed]
    [Google Scholar]
  48. Pascal M. C., Lepelletier M., Giordano G., Chippaux M.. ( 1991;). A regulatory mutant of the trimethylamine N-oxide reductase of Escherichia coli K12. . FEMS Microbiol Lett 78:, 297–300. [CrossRef][PubMed]
    [Google Scholar]
  49. Pogliano J., Lynch A. S., Belin D., Lin E. C. C., Beckwith J.. ( 1997;). Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. . Genes Dev 11:, 1169–1182. [CrossRef][PubMed]
    [Google Scholar]
  50. Prigent-Combaret C., Brombacher E., Vidal O., Ambert A., Lejeune P., Landini P., Dorel C.. ( 2001;). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. . J Bacteriol 183:, 7213–7223. [CrossRef][PubMed]
    [Google Scholar]
  51. Rahmati S., Yang S., Davidson A. L., Zechiedrich E. L.. ( 2002;). Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. . Mol Microbiol 43:, 677–685. [CrossRef][PubMed]
    [Google Scholar]
  52. Raivio T. L., Popkin D. L., Silhavy T. J.. ( 1999;). The Cpx envelope stress response is controlled by amplification and feedback inhibition. . J Bacteriol 181:, 5263–5272.[PubMed]
    [Google Scholar]
  53. Riley M., Abe T., Arnaud M. B., Berlyn M. K. B., Blattner F. R., Chaudhuri R. R., Glasner J. D., Horiuchi T., Keseler I. M.. & other authors ( 2006;). Escherichia coli K-12: a cooperatively developed annotation snapshot–2005. . Nucleic Acids Res 34:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  54. Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muñiz-Rascado L., García-Sotelo J. S., Weiss V., Solano-Lira H., Martínez-Flores I.. & other authors ( 2013;). RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. . Nucleic Acids Res 41: (Database issue), D203–D213. [CrossRef][PubMed]
    [Google Scholar]
  55. Sharma V. K., Bearson S. M. D., Bearson B. L.. ( 2010;). Evaluation of the effects of sdiA, a luxR homologue, on adherence and motility of Escherichia coli O157 : H7. . Microbiology 156:, 1303–1312. [CrossRef][PubMed]
    [Google Scholar]
  56. Shimada T., Fujita N., Maeda M., Ishihama A.. ( 2005;). Systematic search for the Cra-binding promoters using genomic SELEX system. . Genes Cells 10:, 907–918. [CrossRef][PubMed]
    [Google Scholar]
  57. Shimada T., Fujita N., Yamamoto K., Ishihama A.. ( 2011a;). Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. . PLoS ONE 6:, e20081. [CrossRef][PubMed]
    [Google Scholar]
  58. Shimada T., Yamamoto K., Ishihama A.. ( 2011b;). Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. . J Bacteriol 193:, 649–659. [CrossRef][PubMed]
    [Google Scholar]
  59. Shimada T., Yoshida H., Ishihama A.. ( 2013;). Involvement of cyclic AMP receptor protein in regulation of the rmf gene encoding the ribosome modulation factor in Escherichia coli. . J Bacteriol 195:, 2212–2219. [CrossRef][PubMed]
    [Google Scholar]
  60. Simons R. W., Houman F., Kleckner N.. ( 1987;). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. . Gene 53:, 85–96. [CrossRef][PubMed]
    [Google Scholar]
  61. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. . J Mol Biol 189:, 113–130. [CrossRef][PubMed]
    [Google Scholar]
  62. Tavío M. M., Aquili V. D., Poveda J. B., Antunes N. T., Sánchez-Céspedes J., Vila J.. ( 2010;). Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli. . J Antimicrob Chemother 65:, 1178–1186. [CrossRef][PubMed]
    [Google Scholar]
  63. Wang X. D., de Boer P. A., Rothfield L. I.. ( 1991;). A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. . EMBO J 10:, 3363–3372.[PubMed]
    [Google Scholar]
  64. Waters C. M., Bassler B. L.. ( 2005;). Quorum sensing: cell-to-cell communication in bacteria. . Annu Rev Cell Dev Biol 21:, 319–346. [CrossRef][PubMed]
    [Google Scholar]
  65. Wei Y., Lee J.-M., Smulski D. R., LaRossa R. A.. ( 2001;). Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. . J Bacteriol 183:, 2265–2272. [CrossRef][PubMed]
    [Google Scholar]
  66. Weiss D. S.. ( 2004;). Bacterial cell division and the septal ring. . Mol Microbiol 54:, 588–597. [CrossRef][PubMed]
    [Google Scholar]
  67. Wolfe A. J., Parikh N., Lima B. P., Zemaitaitis B.. ( 2008;). Signal integration by the two-component signal transduction response regulator CpxR. . J Bacteriol 190:, 2314–2322. [CrossRef][PubMed]
    [Google Scholar]
  68. Yakhnin H., Baker C. S., Berezin I., Evangelista M. A., Rassin A., Romeo T., Babitzke P.. ( 2011;). CsrA represses translation of sdiA, which encodes the N-acylhomoserine-l-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. . J Bacteriol 193:, 6162–6170. [CrossRef][PubMed]
    [Google Scholar]
  69. Yamamoto K., Ishihama A.. ( 2005a;). Transcriptional response of Escherichia coli to external zinc. . J Bacteriol 187:, 6333–6340. [CrossRef][PubMed]
    [Google Scholar]
  70. Yamamoto K., Ishihama A.. ( 2005b;). Transcriptional response of Escherichia coli to external copper. . Mol Microbiol 56:, 215–227. [CrossRef][PubMed]
    [Google Scholar]
  71. Yamamoto K., Nagura R., Tanabe H., Fujita N., Ishihama A., Utsumi R.. ( 2000;). Negative regulation of the bolA1p of Escherichia coli K-12 by the transcription factor OmpR for osmolarity response genes. . FEMS Microbiol Lett 186:, 257–262. [CrossRef][PubMed]
    [Google Scholar]
  72. Yamamoto K., Yata K., Fujita N., Ishihama A.. ( 2001;). Novel mode of transcription regulation by SdiA, an Escherichia coli homologue of the quorum-sensing regulator. . Mol Microbiol 41:, 1187–1198. [CrossRef][PubMed]
    [Google Scholar]
  73. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A.. ( 2005;). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. . J Biol Chem 280:, 1448–1456. [CrossRef][PubMed]
    [Google Scholar]
  74. Yao Y., Martinez-Yamout M. A., Dickerson T. J., Brogan A. P., Wright P. E., Dyson H. J.. ( 2006;). Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. . J Mol Biol 355:, 262–273. [CrossRef][PubMed]
    [Google Scholar]
  75. Yoshida T., Qin L., Egger L. A., Inouye M.. ( 2006;). Transcription regulation of ompF and ompC by a single transcription factor, OmpR. . J Biol Chem 281:, 17114–17123. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067538-0
Loading
/content/journal/micro/10.1099/mic.0.067538-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error