1887

Abstract

is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis. Phylogenetic analysis of CbrA has highlighted its evolutionary relatedness to the sensor histidine kinases PleC and DivJ, which are involved in CtrA-dependent cell cycle regulation through the shared response regulator DivK. We therefore became interested in testing whether CbrA plays a role in regulating cell cycle processes. We find the loss of results in filamentous cell growth accompanied by cells that contain an aberrant genome complement, indicating CbrA plays a role in regulating cell division and possibly DNA segregation. DivK localizes to the old cell pole during distinct phases of the cell cycle in a phosphorylation-dependent manner. Loss of results in a significantly decreased rate of DivK polar localization when compared with the wild-type, suggesting CbrA helps regulate cell cycle processes by modulating DivK phosphorylation status as a kinase. Consistent with a presumptive decrease in DivK phosphorylation and activity, we also find the steady-state level of CtrA increased in mutants. Our data therefore demonstrate that CbrA contributes to free-living cell cycle regulation, which in light of its requirement for symbiosis, points to the potential importance of cell cycle regulation for establishing an effective host interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067504-0
2013-08-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1552.html?itemId=/content/journal/micro/10.1099/mic.0.067504-0&mimeType=html&fmt=ahah

References

  1. Barnett M. J., Hung D. Y., Reisenauer A., Shapiro L., Long S. R.. ( 2001;). A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. . J Bacteriol 183:, 3204–3210. [CrossRef][PubMed]
    [Google Scholar]
  2. Bastedo D. P., Marczynski G. T.. ( 2009;). CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression. . Mol Microbiol 72:, 139–154. [CrossRef][PubMed]
    [Google Scholar]
  3. Bellefontaine A. F., Pierreux C. E., Mertens P., Vandenhaute J., Letesson J. J., De Bolle X.. ( 2002;). Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. . Mol Microbiol 43:, 945–960. [CrossRef][PubMed]
    [Google Scholar]
  4. Bina J. E., Mekalanos J. J.. ( 2001;). Vibrio cholerae tolC is required for bile resistance and colonization. . Infect Immun 69:, 4681–4685. [CrossRef][PubMed]
    [Google Scholar]
  5. Biondi E. G., Reisinger S. J., Skerker J. M., Arif M., Perchuk B. S., Ryan K. R., Laub M. T.. ( 2006;). Regulation of the bacterial cell cycle by an integrated genetic circuit. . Nature 444:, 899–904. [CrossRef][PubMed]
    [Google Scholar]
  6. Brilli M., Fondi M., Fani R., Mengoni A., Ferri L., Bazzicalupo M., Biondi E. G.. ( 2010;). The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. . BMC Syst Biol 4:, 52. [CrossRef][PubMed]
    [Google Scholar]
  7. Brown P. J., de Pedro M. A., Kysela D. T., Van der Henst C., Kim J., De Bolle X., Fuqua C., Brun Y. V.. ( 2012;). Polar growth in the Alphaproteobacterial order Rhizobiales. . Proc Natl Acad Sci U S A 109:, 1697–1701. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y. E., Tsokos C. G., Biondi E. G., Perchuk B. S., Laub M. T.. ( 2009;). Dynamics of two phosphorelays controlling cell cycle progression in Caulobacter crescentus. . J Bacteriol 191:, 7417–7429. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y. E., Tropini C., Jonas K., Tsokos C. G., Huang K. C., Laub M. T.. ( 2011;). Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. . Proc Natl Acad Sci U S A 108:, 1052–1057. [CrossRef][PubMed]
    [Google Scholar]
  10. Cheng H. P., Walker G. C.. ( 1998;). Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. . J Bacteriol 180:, 20–26.[PubMed]
    [Google Scholar]
  11. Cheng J., Sibley C. D., Zaheer R., Finan T. M.. ( 2007;). A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis. . Microbiology 153:, 375–387. [CrossRef][PubMed]
    [Google Scholar]
  12. Curtis P. D., Brun Y. V.. ( 2010;). Getting in the loop: regulation of development in Caulobacter crescentus. . Microbiol Mol Biol Rev 74:, 13–41. [CrossRef][PubMed]
    [Google Scholar]
  13. Curtis P. D., Quardokus E. M., Lawler M. L., Guo X., Klein D., Chen J. C., Arnold R. J., Brun Y. V.. ( 2012;). The scaffolding and signalling functions of a localization factor impact polar development. . Mol Microbiol 84:, 712–735. [CrossRef][PubMed]
    [Google Scholar]
  14. Domenech P., Kobayashi H., LeVier K., Walker G. C., Barry C. E. III. ( 2009;). BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. . J Bacteriol 191:, 477–485. [CrossRef][PubMed]
    [Google Scholar]
  15. Domian I. J., Quon K. C., Shapiro L.. ( 1997;). Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. . Cell 90:, 415–424. [CrossRef][PubMed]
    [Google Scholar]
  16. Ehrhardt D. W., Atkinson E. M., Long S. R.. ( 1992;). Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. . Science 256:, 998–1000. [CrossRef][PubMed]
    [Google Scholar]
  17. Fields A. T., Navarrete C. S., Zare A. Z., Huang Z., Mostafavi M., Lewis J. C., Rezaeihaghighi Y., Brezler B. J., Ray S.. & other authors ( 2012;). The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti. . Mol Microbiol 84:, 892–920. [CrossRef][PubMed]
    [Google Scholar]
  18. Finan T. M., Hartweig E., LeMieux K., Bergman K., Walker G. C., Signer E. R.. ( 1984;). General transduction in Rhizobium meliloti. . J Bacteriol 159:, 120–124.[PubMed]
    [Google Scholar]
  19. Gibson K. E., Campbell G. R., Lloret J., Walker G. C.. ( 2006;). CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti. . J Bacteriol 188:, 4508–4521. [CrossRef][PubMed]
    [Google Scholar]
  20. Gibson K. E., Barnett M. J., Toman C. J., Long S. R., Walker G. C.. ( 2007;). The symbiosis regulator CbrA modulates a complex regulatory network affecting the flagellar apparatus and cell envelope proteins. . J Bacteriol 189:, 3591–3602. [CrossRef][PubMed]
    [Google Scholar]
  21. Gibson K. E., Kobayashi H., Walker G. C.. ( 2008;). Molecular determinants of a symbiotic chronic infection. . Annu Rev Genet 42:, 413–441. [CrossRef][PubMed]
    [Google Scholar]
  22. Haag A. F., Baloban M., Sani M., Kerscher B., Pierre O., Farkas A., Longhi R., Boncompagni E., Hérouart D.. & other authors ( 2011;). Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. . PLoS Biol 9:, e1001169. [CrossRef][PubMed]
    [Google Scholar]
  23. Hallez R., Bellefontaine A. F., Letesson J. J., De Bolle X.. ( 2004;). Morphological and functional asymmetry in α-proteobacteria. . Trends Microbiol 12:, 361–365. [CrossRef][PubMed]
    [Google Scholar]
  24. Hallez R., Mignolet J., Van Mullem V., Wery M., Vandenhaute J., Letesson J. J., Jacobs-Wagner C., De Bolle X.. ( 2007;). The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. . EMBO J 26:, 1444–1455. [CrossRef][PubMed]
    [Google Scholar]
  25. Hecht G. B., Lane T., Ohta N., Sommer J. M., Newton A.. ( 1995;). An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. . EMBO J 14:, 3915–3924.[PubMed]
    [Google Scholar]
  26. Hung D. Y., Shapiro L.. ( 2002;). A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression. . Proc Natl Acad Sci U S A 99:, 13160–13165. [CrossRef][PubMed]
    [Google Scholar]
  27. Jacobs C., Domian I. J., Maddock J. R., Shapiro L.. ( 1999;). Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. . Cell 97:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  28. Jacobs C., Hung D., Shapiro L.. ( 2001;). Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. . Proc Natl Acad Sci U S A 98:, 4095–4100. [CrossRef][PubMed]
    [Google Scholar]
  29. Jacobs C., Ausmees N., Cordwell S. J., Shapiro L., Laub M. T.. ( 2003;). Functions of the CckA histidine kinase in Caulobacter cell cycle control. . Mol Microbiol 47:, 1279–1290. [CrossRef][PubMed]
    [Google Scholar]
  30. Jenal U.. ( 2009;). The role of proteolysis in the Caulobacter crescentus cell cycle and development. . Res Microbiol 160:, 687–695. [CrossRef][PubMed]
    [Google Scholar]
  31. Jonas K., Chen Y. E., Laub M. T.. ( 2011;). Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication. . Curr Biol 21:, 1092–1101. [CrossRef][PubMed]
    [Google Scholar]
  32. Kahng L. S., Shapiro L.. ( 2001;). The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. . J Bacteriol 183:, 3065–3075. [CrossRef][PubMed]
    [Google Scholar]
  33. Kelly A. J., Sackett M. J., Din N., Quardokus E., Brun Y. V.. ( 1998;). Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. . Genes Dev 12:, 880–893. [CrossRef][PubMed]
    [Google Scholar]
  34. Kim J., Heindl J. E., Fuqua C.. ( 2013;). Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens. . PLoS ONE 8:, e56682. [CrossRef][PubMed]
    [Google Scholar]
  35. Kobayashi H., De Nisco N. J., Chien P., Simmons L. A., Walker G. C.. ( 2009;). Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection. . Mol Microbiol 73:, 586–600. [CrossRef][PubMed]
    [Google Scholar]
  36. Lam H., Matroule J. Y., Jacobs-Wagner C.. ( 2003;). The asymmetric spatial distribution of bacterial signal transduction proteins coordinates cell cycle events. . Dev Cell 5:, 149–159. [CrossRef][PubMed]
    [Google Scholar]
  37. Latch J. N., Margolin W.. ( 1997;). Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. . J Bacteriol 179:, 2373–2381.[PubMed]
    [Google Scholar]
  38. Laub M. T., Chen S. L., Shapiro L., McAdams H. H.. ( 2002;). Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. . Proc Natl Acad Sci U S A 99:, 4632–4637. [CrossRef][PubMed]
    [Google Scholar]
  39. Laub M. T., Biondi E. G., Skerker J. M.. ( 2007;). Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. . Methods Enzymol 423:, 531–548. [CrossRef][PubMed]
    [Google Scholar]
  40. Leigh J. A., Signer E. R., Walker G. C.. ( 1985;). Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. . Proc Natl Acad Sci U S A 82:, 6231–6235. [CrossRef][PubMed]
    [Google Scholar]
  41. Levi A., Jenal U.. ( 2006;). Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. . J Bacteriol 188:, 5315–5318. [CrossRef][PubMed]
    [Google Scholar]
  42. Matroule J. Y., Lam H., Burnette D. T., Jacobs-Wagner C.. ( 2004;). Cytokinesis monitoring during development; rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. . Cell 118:, 579–590. [CrossRef][PubMed]
    [Google Scholar]
  43. McAdams H. H., Shapiro L.. ( 2009;). System-level design of bacterial cell cycle control. . FEBS Lett 583:, 3984–3991. [CrossRef][PubMed]
    [Google Scholar]
  44. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A. E., Barloy-Hubler F., Galibert F.. & other authors ( 2006;). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. . Proc Natl Acad Sci U S A 103:, 5230–5235. [CrossRef][PubMed]
    [Google Scholar]
  45. Quon K. C., Marczynski G. T., Shapiro L.. ( 1996;). Cell cycle control by an essential bacterial two-component signal transduction protein. . Cell 84:, 83–93. [CrossRef][PubMed]
    [Google Scholar]
  46. Quon K. C., Yang B., Domian I. J., Shapiro L., Marczynski G. T.. ( 1998;). Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. . Proc Natl Acad Sci U S A 95:, 120–125. [CrossRef][PubMed]
    [Google Scholar]
  47. Robertson G. T., Reisenauer A., Wright R., Jensen R. B., Jensen A., Shapiro L., Roop R. M. II. ( 2000;). The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. . J Bacteriol 182:, 3482–3489. [CrossRef][PubMed]
    [Google Scholar]
  48. Roop R. M. II, Robertson G. T., Ferguson G. P., Milford L. E., Winkler M. E., Walker G. C.. ( 2002;). Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. . Vet Microbiol 90:, 349–363. [CrossRef][PubMed]
    [Google Scholar]
  49. Sackett M. J., Kelly A. J., Brun Y. V.. ( 1998;). Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. . Mol Microbiol 28:, 421–434. [CrossRef][PubMed]
    [Google Scholar]
  50. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene 145:, 69–73. [CrossRef][PubMed]
    [Google Scholar]
  51. Schroeder B. K., House B. L., Mortimer M. W., Yurgel S. N., Maloney S. C., Ward K. L., Kahn M. L.. ( 2005;). Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. . Appl Environ Microbiol 71:, 5858–5864. [CrossRef][PubMed]
    [Google Scholar]
  52. Sibley C. D., MacLellan S. R., Finan T.. ( 2006;). The Sinorhizobium meliloti chromosomal origin of replication. . Microbiology 152:, 443–455. [CrossRef][PubMed]
    [Google Scholar]
  53. Skerker J. M., Laub M. T.. ( 2004;). Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. . Nat Rev Microbiol 2:, 325–337. [CrossRef][PubMed]
    [Google Scholar]
  54. Tsokos C. G., Laub M. T.. ( 2012;). Polarity and cell fate asymmetry in Caulobacter crescentus. . Curr Opin Microbiol 15:, 744–750. [CrossRef][PubMed]
    [Google Scholar]
  55. Tsokos C. G., Perchuk B. S., Laub M. T.. ( 2011;). A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus. . Dev Cell 20:, 329–341. [CrossRef][PubMed]
    [Google Scholar]
  56. Ugalde R. A.. ( 1999;). Intracellular lifestyle of Brucella spp. Common genes with other animal pathogens, plant pathogens, and endosymbionts. . Microbes Infect 1:, 1211–1219. [CrossRef][PubMed]
    [Google Scholar]
  57. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A.. & other authors ( 2010;). Plant peptides govern terminal differentiation of bacteria in symbiosis. . Science 327:, 1122–1126. [CrossRef][PubMed]
    [Google Scholar]
  58. Van der Henst C., Beaufay F., Mignolet J., Didembourg C., Colinet J., Hallet B., Letesson J. J., De Bolle X.. ( 2012;). The histidine kinase PdhS controls cell cycle progression of the pathogenic alphaproteobacterium Brucella abortus. . J Bacteriol 194:, 5305–5314. [CrossRef][PubMed]
    [Google Scholar]
  59. Viollier P. H., Sternheim N., Shapiro L.. ( 2002;). Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. . Proc Natl Acad Sci U S A 99:, 13831–13836. [CrossRef][PubMed]
    [Google Scholar]
  60. Wheeler R. T., Shapiro L.. ( 1999;). Differential localization of two histidine kinases controlling bacterial cell differentiation. . Mol Cell 4:, 683–694. [CrossRef][PubMed]
    [Google Scholar]
  61. Wortinger M., Sackett M. J., Brun Y. V.. ( 2000;). CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. . EMBO J 19:, 4503–4512. [CrossRef][PubMed]
    [Google Scholar]
  62. Wright R., Stephens C., Shapiro L.. ( 1997;). The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. . J Bacteriol 179:, 5869–5877.[PubMed]
    [Google Scholar]
  63. Wu J., Ohta N., Newton A.. ( 1998;). An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. . Proc Natl Acad Sci U S A 95:, 1443–1448. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067504-0
Loading
/content/journal/micro/10.1099/mic.0.067504-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error