1887

Abstract

subsp. is a well-known plant pathogen that causes severe soft rot disease in various crops, resulting in considerable economic loss. To identify pathogenicity-related factors, Chinese cabbage was inoculated with 5314 transposon mutants of subsp. Pcc21 derived using Tn5 transposon mutagenesis. A total of 35 reduced-virulence or avirulent mutants were isolated, and 14 loci were identified. The 14 loci could be functionally grouped into nutrient utilization (, , , and ), production of plant cell-wall-degrading enzymes (PCWDEs) (, and PCC21_023220), motility ( and ), biofilm formation (, and ), susceptibility to antibacterial plant chemicals () and unknown function (ECA2640). Among the 14 genes identified, , and PCC21_023220 are novel pathogenicity factors of subsp. involved in biofilm formation, phytochemical resistance and PCWDE production, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067280-0
2013-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1487.html?itemId=/content/journal/micro/10.1099/mic.0.067280-0&mimeType=html&fmt=ahah

References

  1. Abbott D. W., Boraston A. B.. ( 2008;). Structural biology of pectin degradation by Enterobacteriaceae.. Microbiol Mol Biol Rev 72:, 301–316. [CrossRef][PubMed]
    [Google Scholar]
  2. Aizawa S. I.. ( 2001;). Bacterial flagella and type III secretion systems. . FEMS Microbiol Lett 202:, 157–164. [CrossRef][PubMed]
    [Google Scholar]
  3. Al-Karablieh N., Weingart H., Ullrich M. S.. ( 2009a;). Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological niches. . Int J Mol Sci 10:, 629–645. [CrossRef][PubMed]
    [Google Scholar]
  4. Al-Karablieh N., Weingart H., Ullrich M. S.. ( 2009b;). The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora.. Microb Biotechnol 2:, 465–475. [CrossRef][PubMed]
    [Google Scholar]
  5. Aleksenko A., Liu W., Gojkovic Z., Nielsen J., Piskur J.. ( 1999;). Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. . Mol Microbiol 33:, 599–611. [CrossRef][PubMed]
    [Google Scholar]
  6. Barabote R. D., Johnson O. L., Zetina E., San Francisco S. K., Fralick J. A., San Francisco M. J.. ( 2003;). Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. . J Bacteriol 185:, 5772–5778. [CrossRef][PubMed]
    [Google Scholar]
  7. Burr T., Barnard A. M., Corbett M. J., Pemberton C. L., Simpson N. J., Salmond G. P.. ( 2006;). Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. . Mol Microbiol 59:, 113–125. [CrossRef][PubMed]
    [Google Scholar]
  8. Caspi R., Altman T., Dale J. M., Dreher K., Fulcher C. A., Gilham F., Kaipa P., Karthikeyan A. S., Kothari A. et al. ( 2010;). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. . Nucleic Acids Res 38: (Database issue), D473–D479. [CrossRef][PubMed]
    [Google Scholar]
  9. Chatterjee S., Sonti R. V.. ( 2005;). Virulence deficiency caused by a transposon insertion in the purH gene of Xanthomonas oryzae pv. oryzae.. Can J Microbiol 51:, 575–581. [CrossRef][PubMed]
    [Google Scholar]
  10. Chatterjee A., Cui Y., Liu Y., Dumenyo C. K., Chatterjee A. K.. ( 1995;). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. . Appl Environ Microbiol 61:, 1959–1967.[PubMed]
    [Google Scholar]
  11. Chatterjee A., Cui Y., Chatterjee A. K.. ( 2009;). RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. . J Bacteriol 191:, 4582–4593. [CrossRef][PubMed]
    [Google Scholar]
  12. Clarke M. B., Hughes D. T., Zhu C., Boedeker E. C., Sperandio V.. ( 2006;). The QseC sensor kinase: a bacterial adrenergic receptor. . Proc Natl Acad Sci U S A 103:, 10420–10425. [CrossRef][PubMed]
    [Google Scholar]
  13. Cui Y., Chatterjee A., Hasegawa H., Chatterjee A. K.. ( 2006;). Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. . J Bacteriol 188:, 4715–4726. [CrossRef][PubMed]
    [Google Scholar]
  14. Cui Y., Chatterjee A., Yang H., Chatterjee A. K.. ( 2008;). Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. . J Bacteriol 190:, 4610–4623. [CrossRef][PubMed]
    [Google Scholar]
  15. Dougherty M. J., Boyd J. M., Downs D. M.. ( 2006;). Inhibition of fructose-1,6-bisphosphatase by aminoimidazole carboxamide ribotide prevents growth of Salmonella enterica purH mutants on glycerol. . J Biol Chem 281:, 33892–33899. [CrossRef][PubMed]
    [Google Scholar]
  16. Durham-Colleran M. W., Verhoeven A. B., van Hoek M. L.. ( 2010;). Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. . Microb Ecol 59:, 457–465. [CrossRef][PubMed]
    [Google Scholar]
  17. Federici L., Walas F., Luisi B.. ( 2004;). The structure and mechanism of the TolC outer membrane transport protein. . Curr Sci 87:, 190–196.
    [Google Scholar]
  18. Ferris H. U., Furukawa Y., Minamino T., Kroetz M. B., Kihara M., Namba K., Macnab R. M.. ( 2005;). FlhB regulates ordered export of flagellar components via autocleavage mechanism. . J Biol Chem 280:, 41236–41242. [CrossRef][PubMed]
    [Google Scholar]
  19. Fray R. G., Throup J. P., Daykin M., Wallace A., Williams P., Stewart G. S., Grierson D.. ( 1999;). Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. . Nat Biotechnol 17:, 1017–1020. [CrossRef][PubMed]
    [Google Scholar]
  20. González Barrios A. F., Zuo R., Hashimoto Y., Yang L., Bentley W. E., Wood T. K.. ( 2006;). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). . J Bacteriol 188:, 305–316. [CrossRef][PubMed]
    [Google Scholar]
  21. Gu Y. Z., Hogenesch J. B., Bradfield C. A.. ( 2000;). The PAS superfamily: sensors of environmental and developmental signals. . Annu Rev Pharmacol Toxicol 40:, 519–561. [CrossRef][PubMed]
    [Google Scholar]
  22. Hadjifrangiskou M., Kostakioti M., Chen S. L., Henderson J. P., Greene S. E., Hultgren S. J.. ( 2011;). A central metabolic circuit controlled by QseC in pathogenic Escherichia coli.. Mol Microbiol 80:, 1516–1529. [CrossRef][PubMed]
    [Google Scholar]
  23. Henke J. M., Bassler B. L.. ( 2004;). Bacterial social engagements. . Trends Cell Biol 14:, 648–656. [CrossRef][PubMed]
    [Google Scholar]
  24. Hossain Md. M., Shibata S., Aizawa S.-I., Tsuyumu S.. ( 2005;). Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora.. Physiol Mol Plant Pathol 66:, 134–143. [CrossRef]
    [Google Scholar]
  25. Jahn C. E., Selimi D. A., Barak J. D., Charkowski A. O.. ( 2011;). The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. . Microbiology 157:, 2733–2744. [CrossRef][PubMed]
    [Google Scholar]
  26. Kim Y. R., Lee S. E., Kim C. M., Kim S. Y., Shin E. K., Shin D. H., Chung S. S., Choy H. E., Progulske-Fox A. et al. ( 2003;). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. . Infect Immun 71:, 5461–5471. [CrossRef][PubMed]
    [Google Scholar]
  27. Koczan J. M., McGrath M. J., Zhao Y., Sundin G. W.. ( 2009;). Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. . Phytopathology 99:, 1237–1244. [CrossRef][PubMed]
    [Google Scholar]
  28. Kutsukake K., Ohya Y., Iino T.. ( 1990;). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium.. J Bacteriol 172:, 741–747.[PubMed]
    [Google Scholar]
  29. Laasik E., Ojarand M., Pajunen M., Savilahti H., Mäe A.. ( 2005;). Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. . FEMS Microbiol Lett 243:, 93–99. [CrossRef][PubMed]
    [Google Scholar]
  30. Lee D. H., Jeong H. S., Jeong H. G., Kim K. M., Kim H., Choi S. H.. ( 2008;). A consensus sequence for binding of SmcR, a Vibrio vulnificus LuxR homologue, and genome-wide identification of the SmcR regulon. . J Biol Chem 283:, 23610–23618. [CrossRef][PubMed]
    [Google Scholar]
  31. Mole B., Habibi S., Dangl J. L., Grant S. R.. ( 2010;). Gluconate metabolism is required for virulence of the soft-rot pathogen Pectobacterium carotovorum.. Mol Plant Microbe Interact 23:, 1335–1344. [CrossRef][PubMed]
    [Google Scholar]
  32. Nasser W., Bouillant M. L., Salmond G., Reverchon S.. ( 1998;). Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. . Mol Microbiol 29:, 1391–1405. [CrossRef][PubMed]
    [Google Scholar]
  33. Novak E. A., Shao H., Daep C. A., Demuth D. R.. ( 2010;). Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans.. Infect Immun 78:, 2919–2926. [CrossRef][PubMed]
    [Google Scholar]
  34. O’Toole G. A., Kolter R.. ( 1998;). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. . Mol Microbiol 28:, 449–461. [CrossRef][PubMed]
    [Google Scholar]
  35. Patte J. C., Clepet C., Bally M., Borne F., Méjean V., Foglino M.. ( 1999;). ThrH, a homoserine kinase isozyme with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa.. Microbiology 145:, 845–853. [CrossRef][PubMed]
    [Google Scholar]
  36. Pérez-Mendoza D., Coulthurst S. J., Sanjuán J., Salmond G. P.. ( 2011;). N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. . Microbiology 157:, 3340–3348. [CrossRef][PubMed]
    [Google Scholar]
  37. Perombelon M. C. M.. ( 2002;). Potato disease caused by soft rot erwinias: an overview of pathogenesis. . Plant Pathol 51:, 1–12. [CrossRef]
    [Google Scholar]
  38. Pertea M., Ayanbule K., Smedinghoff M., Salzberg S. L.. ( 2009;). OperonDB: a comprehensive database of predicted operons in microbial genomes. . Nucleic Acids Res 37: (Database issue), D479–D482. [CrossRef][PubMed]
    [Google Scholar]
  39. Pirhonen M., Saarilahti H., Karlsson M.-B., Palva E. T.. ( 1991;). Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. . Mol Plant Microbe Interact 4:, 276–283. [CrossRef]
    [Google Scholar]
  40. Pirhonen M., Flego D., Heikinheimo R., Palva E. T.. ( 1993;). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. . EMBO J 12:, 2467–2476.[PubMed]
    [Google Scholar]
  41. Pratt L. A., Kolter R.. ( 1998;). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. . Mol Microbiol 30:, 285–293. [CrossRef][PubMed]
    [Google Scholar]
  42. Prigent-Combaret C., Zghidi-Abouzid O., Effantin G., Lejeune P., Reverchon S., Nasser W.. ( 2012;). The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii.. Mol Microbiol 86:, 172–186. [CrossRef][PubMed]
    [Google Scholar]
  43. Roh E., Park T. H., Kim M. I., Lee S., Ryu S., Oh C. S., Rhee S., Kim D. H., Park B. S., Heu S.. ( 2010;). Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. . Appl Environ Microbiol 76:, 7541–7549. [CrossRef][PubMed]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual. New York:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  45. Simões M., Bennett R. N., Rosa E. A.. ( 2009;). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. . Nat Prod Rep 26:, 746–757. [CrossRef][PubMed]
    [Google Scholar]
  46. Sperandio V., Torres A. G., Kaper J. B.. ( 2002;). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli.. Mol Microbiol 43:, 809–821. [CrossRef][PubMed]
    [Google Scholar]
  47. Starr M. P., Chatterjee A. K., Starr P. B., Buchanan G. E.. ( 1977;). Enzymatic degradation of polygalacturonic acid by Yersinia and Klebsiella species in relation to clinical laboratory procedures. . J Clin Microbiol 6:, 379–386.[PubMed]
    [Google Scholar]
  48. Taylor B. L., Zhulin I. B.. ( 1999;). PAS domains: internal sensors of oxygen, redox potential, and light. . Microbiol Mol Biol Rev 63:, 479–506.[PubMed]
    [Google Scholar]
  49. Toth I. K., Bell K. S., Holeva M. C., Birch P. R.. ( 2003;). Soft rot erwiniae: from genes to genomes. . Mol Plant Pathol 4:, 17–30. [CrossRef][PubMed]
    [Google Scholar]
  50. Urbany C., Neuhaus H. E.. ( 2008;). Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. . Mol Plant Microbe Interact 21:, 547–554. [CrossRef][PubMed]
    [Google Scholar]
  51. Wakimoto N., Nishi J., Sheikh J., Nataro J. P., Sarantuya J., Iwashita M., Manago K., Tokuda K., Yoshinaga M., Kawano Y.. ( 2004;). Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli.. Am J Trop Med Hyg 71:, 687–690.[PubMed]
    [Google Scholar]
  52. Wang Y., Xu Y., Perepelov A. V., Qi Y., Knirel Y. A., Wang L., Feng L.. ( 2007;). Biochemical characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7. . J Bacteriol 189:, 8626–8635. [CrossRef][PubMed]
    [Google Scholar]
  53. Wery N., Gerike U., Sharman A., Chaudhuri J. B., Hough D. W., Danson M. J.. ( 2003;). Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from Antarctic soil. . Appl Environ Microbiol 69:, 1457–1464. [CrossRef][PubMed]
    [Google Scholar]
  54. West T. P.. ( 2005;). Regulation of pyrimidine synthesis in Pseudomonas resinovorans.. Lett Appl Microbiol 40:, 473–478. [CrossRef][PubMed]
    [Google Scholar]
  55. Whitehead N. A., Byers J. T., Commander P., Corbett M. J., Coulthurst S. J., Everson L., Harris A. K., Pemberton C. L., Simpson N. J. et al. ( 2002;). The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. . Antonie van Leeuwenhoek 81:, 223–231. [CrossRef][PubMed]
    [Google Scholar]
  56. Zou Y., Guo X., Picardeau M., Xu H., Zhao G.. ( 2007;). A comprehensive survey on isoleucine biosynthesis pathways in seven epidemic Leptospira interrogans reference strains of China. . FEMS Microbiol Lett 269:, 90–96. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067280-0
Loading
/content/journal/micro/10.1099/mic.0.067280-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error