The Hwp2p can complement the lack of filamentation of a null strain Free

Abstract

The opportunistic fungal pathogen is one of the leading agents of life-threatening infections affecting immunocompromised individuals. Many factors make a successful pathogen. These include the ability to switch between yeast and invasive hyphal morphologies in addition to an arsenal of cell wall virulence factors such as lipases, proteases, dismutases and adhesins that promote the attachment to the host, a prerequisite for invasive growth. We have previously characterized Hwp2, a cell wall protein which we found necessary for proper oxidative stress, biofilm formation and adhesion to host cells. Baker’s yeast also possesses adhesins that promote aggregation and flocculence. Flo11 is one such adhesin that has sequence similarity to Hwp2. Here we determined that transforming an HWP2 cassette can complement the lack of filamentation of an flo11 null strain and impart on adhesive properties similar to those of a pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067249-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1160.html?itemId=/content/journal/micro/10.1099/mic.0.067249-0&mimeType=html&fmt=ahah

References

  1. Boeke J. D., La Croute F., Fink G. R.( 1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346 [View Article][PubMed]
    [Google Scholar]
  2. Dib L., Hayek P., Sadek H., Beyrouthy B., Khalaf R. A.( 2008). The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Med Sci Monit 14:BR113–BR121[PubMed]
    [Google Scholar]
  3. Dranginis A. M., Rauceo J. M., Coronado J. E., Lipke P. N.( 2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294 [View Article][PubMed]
    [Google Scholar]
  4. Fu Y., Rieg G., Fonzi W. A., Belanger P. H., Edwards J. E. Jr, Filler S. G.( 1998). Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 4:1783–1786
    [Google Scholar]
  5. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R.( 1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090 [View Article][PubMed]
    [Google Scholar]
  6. Hayek P., Dib L., Yazbeck P., Beyrouthy B., Khalaf R. A.( 2010). Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Microbiol Res 165:250–258 [View Article][PubMed]
    [Google Scholar]
  7. Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E. Jr, Nozawa Y., Ghannoum M. A.( 1995). Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 63:1993–1998[PubMed]
    [Google Scholar]
  8. Khalaf R. A., Zitomer R. S.( 2001). The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512[PubMed]
    [Google Scholar]
  9. Lambrechts M. G., Bauer F. F., Marmur J., Pretorius I. S.( 1996). Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93:8419–8424 [View Article][PubMed]
    [Google Scholar]
  10. Martchenko M., Levitin A., Hogues H., Nantel A., Whiteway M.( 2007). Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013 [View Article][PubMed]
    [Google Scholar]
  11. Mohan das V., Ballal M.( 2008). Proteinase and phospholipase activity as virulence factors in Candida species isolated from blood. Rev Iberoam Micol 25:208–210 [View Article][PubMed]
    [Google Scholar]
  12. Negredo A., Monteoliva L., Gil C., Pla J., Nombela C.( 1997). Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143 (Pt 2):297–302 [View Article][PubMed]
    [Google Scholar]
  13. Otoo H. N., Lee K. G., Qiu W., Lipke P. N.( 2008). Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 7:776–782 [View Article][PubMed]
    [Google Scholar]
  14. Ramsook C. B., Tan C., Garcia M. C., Fung R., Soybelman G., Henry R., Litewka A., O’Meally S., Otoo H. N.& other authors ( 2010). Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9:393–404 [View Article][PubMed]
    [Google Scholar]
  15. Tsuchimori N., Sharkey L. L., Fonzi W. A., French S. W., Edwards J. E. Jr, Filler S. G.( 2000). Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect Immun 68:1997–2002 [View Article][PubMed]
    [Google Scholar]
  16. Viudes A., Pemán J., Cantón E., Ubeda P., López-Ribot J. L., Gobernado M.( 2002). Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis 21:767–774 [View Article][PubMed]
    [Google Scholar]
  17. Yang Y. L.( 2003). Virulence factors of Candida species. J Microbiol Immunol Infect 36:223–228[PubMed]
    [Google Scholar]
  18. Younes S., Bahnan W., Dimassi H. I., Khalaf R. A.( 2011). The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance. Microbiol Res 166:430–436 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067249-0
Loading
/content/journal/micro/10.1099/mic.0.067249-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed