1887

Abstract

The number of copies of rRNA () operons in a bacterial genome differs greatly among bacterial species. Here we examined the phenotypic effects of variations in the number of copies of rRNA genes in the genome of by analysis of eight mutant strains constructed to carry from two to nine copies of the operon. We found that a decrease in the number of copies from ten to one increased the doubling time, and decreased the sporulation frequency and motility. The maximum levels for transformation activity were similar among the strains, although the competence development was significantly delayed in the strain with a single operon. Normal sporulation only occurred if more than four copies of the operon were present, although ten copies were needed for vegetative growth after germination of the spores. This behaviour was seen even though the intracellular level of ribosomes was similar among strains with four to ten copies of the operon. Furthermore, ten copies of the operon were needed for the highest swarming activity. We also constructed 21 strains that carried all possible combinations of two copies of the operons, and found that these showed a range of growth rates and sporulation frequencies that all fell between those recorded for strains with one or three copies of the operon. The results suggested that the copy number of the operon has a major influence on cellular processes such as growth rate and sporulation frequency.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067025-0
2013-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2225.html?itemId=/content/journal/micro/10.1099/mic.0.067025-0&mimeType=html&fmt=ahah

References

  1. Akanuma G., Nanamiya H., Natori Y., Yano K., Suzuki S., Omata S., Ishizuka M., Sekine Y., Kawamura F.. ( 2012;). Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J Bacteriol194:6282–6291 [CrossRef][PubMed]
    [Google Scholar]
  2. Asai T., Zaporojets D., Squires C., Squires C. L.. ( 1999a;). An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A96:1971–1976 [CrossRef][PubMed]
    [Google Scholar]
  3. Asai T., Condon C., Voulgaris J., Zaporojets D., Shen B., Al-Omar M., Squires C., Squires C. L.. ( 1999b;). Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol181:3803–3809[PubMed]
    [Google Scholar]
  4. Ashikaga S., Nanamiya H., Ohashi Y., Kawamura F.. ( 2000;). Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol182:2411–2415 [CrossRef][PubMed]
    [Google Scholar]
  5. Auchtung J. M., Lee C. A., Monson R. E., Lehman A. P., Grossman A. D.. ( 2005;). Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A102:12554–12559 [CrossRef][PubMed]
    [Google Scholar]
  6. Britton R. A., Lin D. C.-H., Grossman A. D.. ( 1998;). Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev12:1254–1259 [CrossRef][PubMed]
    [Google Scholar]
  7. Britton R. A., Küster-Schöck E., Auchtung T. A., Grossman A. D.. ( 2007;). SOS induction in a subpopulation of structural maintenance of chromosome (Smc) mutant cells in Bacillus subtilis. . J Bacteriol189:4359–4366 [CrossRef][PubMed]
    [Google Scholar]
  8. Condon C., Philips J., Fu Z.-Y., Squires C., Squires C. L.. ( 1992;). Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. . EMBO J11:4175–4185[PubMed]
    [Google Scholar]
  9. Condon C., Liveris D., Squires C., Schwartz I., Squires C. L.. ( 1995;). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol177:4152–4156[PubMed]
    [Google Scholar]
  10. Ellwood M., Nomura M.. ( 1980;). Deletion of a ribosomal ribonucleic acid operon in Escherichia coli. . J Bacteriol143:1077–1080[PubMed]
    [Google Scholar]
  11. Errington J.. ( 1993;). Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev57:1–33[PubMed]
    [Google Scholar]
  12. Errington J., Daniel R. A., Scheffers D. J.. ( 2003;). Cytokinesis in bacteria. Microbiol Mol Biol Rev67:52–65 [CrossRef][PubMed]
    [Google Scholar]
  13. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G. et al. ( 1995;). The minimal gene complement of Mycoplasma genitalium. . Science270:397–404 [CrossRef][PubMed]
    [Google Scholar]
  14. Grossman A. D.. ( 1995;). Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. . Annu Rev Genet29:477–508 [CrossRef][PubMed]
    [Google Scholar]
  15. Henkin T. M.. ( 2002;). Ribosomes, protein synthesis factors, and tRNA synthetases. Bacillus subtilis and its Closest Relatives: from Genes to Cells313–322 Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;[CrossRef]
    [Google Scholar]
  16. Hoch J. A.. ( 1993;). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. . Annu Rev Microbiol47:441–465 [CrossRef][PubMed]
    [Google Scholar]
  17. Klappenbach J. A., Dunbar J. M., Schmidt T. M.. ( 2000;). rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol66:1328–1333 [CrossRef][PubMed]
    [Google Scholar]
  18. Klappenbach J. A., Saxman P. R., Cole J. R., Schmidt T. M.. ( 2001;). rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res29:181–184 [CrossRef][PubMed]
    [Google Scholar]
  19. Kodama T., Takamatsu H., Asai K., Kobayashi K., Ogasawara N., Watabe K.. ( 1999;). The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J Bacteriol181:4584–4591[PubMed]
    [Google Scholar]
  20. Koga K., Ikegami A., Nakasone K., Murayama R., Akanuma G., Natori Y., Nanamiya H., Kawamura F.. ( 2006;). Construction of Bacillus subtilis strains carrying the transcriptional bgaB fusion with the promoter region of each rrn operon and their differential transcription during spore development. J Gen Appl Microbiol52:119–124 [CrossRef][PubMed]
    [Google Scholar]
  21. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al. ( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature390:249–256 [CrossRef][PubMed]
    [Google Scholar]
  22. Lecompte O., Ripp R., Thierry J.-C., Moras D., Poch O.. ( 2002;). Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res30:5382–5390 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee C. A., Auchtung J. M., Monson R. E., Grossman A. D.. ( 2007;). Identification and characterization of int (integrase), xis (excisionase) and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. . Mol Microbiol66:1356–1369[PubMed]
    [Google Scholar]
  24. Leighton T. J., Doi R. H.. ( 1971;). The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. . J Biol Chem246:3189–3195[PubMed]
    [Google Scholar]
  25. Losick R., Stragier P.. ( 1992;). Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. . Nature355:601–604 [CrossRef][PubMed]
    [Google Scholar]
  26. Moeller R., Horneck G., Rettberg P., Mollenkopf H. J., Stackebrandt E., Nicholson W. L.. ( 2006;). A method for extracting RNA from dormant and germinating Bacillus subtilis strain 168 endospores. Curr Microbiol53:227–231 [CrossRef][PubMed]
    [Google Scholar]
  27. Nanamiya H., Ohashi Y., Asai K., Moriya S., Ogasawara N., Fujita M., Sadaie Y., Kawamura F.. ( 1998;). ClpC regulates the fate of a sporulation initiation sigma factor, σH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol29:505–513 [CrossRef]
    [Google Scholar]
  28. Nanamiya H., Sato M., Masuda K., Sato M., Wada T., Suzuki S., Natori Y., Katano M., Akanuma G., Kawamura F.. ( 2010;). Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. Microbiology156:2944–2952 [CrossRef][PubMed]
    [Google Scholar]
  29. Natori Y., Nanamiya H., Akanuma G., Kosono S., Kudo T., Ochi K., Kawamura F.. ( 2007;). A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. . Mol Microbiol63:294–307 [CrossRef][PubMed]
    [Google Scholar]
  30. Nomura M.. ( 1999;). Engineering of bacterial ribosomes: replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. Proc Natl Acad Sci U S A96:1820–1822 [CrossRef][PubMed]
    [Google Scholar]
  31. Rutberg L.. ( 1969;). Mapping of a temperate bacteriophage active on Bacillus subtilis . J Virol3:38–44[PubMed]
    [Google Scholar]
  32. Samarrai W., Liu D. X., White A. M., Studamire B., Edelstein J., Srivastava A., Widom R. L., Rudner R.. ( 2011;). Differential responses of Bacillus subtilis rRNA promoters to nutritional stress. J Bacteriol193:723–733 [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schaeffer P., Millet J., Aubert J. P.. ( 1965;). Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A54:704–711 [CrossRef][PubMed]
    [Google Scholar]
  35. Widom R. L., Jarvis E. D., LaFauci G., Rudner R.. ( 1988;). Instability of rRNA operons in Bacillus subtilis. . J Bacteriol170:605–610[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067025-0
Loading
/content/journal/micro/10.1099/mic.0.067025-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error