1887

Abstract

Chronic infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. isolates undergo significant transcriptomic and proteomic modulation as they adapt to the niche environment of the CF lung and the host defences. This study characterized the virulence of isogenic strain pairs of epidemic or frequent clonal complexes (FCCs) and non-epidemic or infrequent clonal complexes (IFCCs) that were collected 5–8 years apart from five chronically infected adult CF patients. Strains showed a significant decrease in virulence over the course of chronic infection using a slow-killing assay and in phenotypic tests for important virulence factors. This decrease in virulence correlated with numerous differentially expressed genes such as and . Microarray analysis identified a large genomic island deletion in the IFCC strain pair that included type three secretion system effector and fimbrial subunit genes. This study presents novel data to examine the transcriptomic profiles of sequentially collected from CF adults. The genes with virulence-related functions identified here present potential targets for new therapies and vaccines against FCCs and IFCCs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066985-0
2013-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2354.html?itemId=/content/journal/micro/10.1099/mic.0.066985-0&mimeType=html&fmt=ahah

References

  1. Al-Aloul M., Crawley J., Winstanley C., Hart C. A., Ledson M. J., Walshaw M. J.. ( 2004;). Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. . Thorax 59:, 334–336. [CrossRef][PubMed]
    [Google Scholar]
  2. Armstrong D., Bell S., Robinson M., Bye P., Rose B., Harbour C., Lee C., Service H., Nissen M.. & other authors ( 2003;). Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. . J Clin Microbiol 41:, 2266–2267. [CrossRef][PubMed]
    [Google Scholar]
  3. Carter M. E., Fothergill J. L., Walshaw M. J., Rajakumar K., Kadioglu A., Winstanley C.. ( 2010;). A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. . J Infect Dis 202:, 935–942. [CrossRef][PubMed]
    [Google Scholar]
  4. Casadevall A., Pirofski L. A.. ( 2009;). Virulence factors and their mechanisms of action: the view from a damage-response framework. . J Water Health 7: (Suppl. 1), S2–S18. [CrossRef][PubMed]
    [Google Scholar]
  5. Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B. P., Faure K.. ( 2009;). Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. . Infect Immun 77:, 2065–2075. [CrossRef][PubMed]
    [Google Scholar]
  6. Ciofu O., Mandsberg L. F., Wang H., Høiby N.. ( 2012;). Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. . FEMS Immunol Med Microbiol 65:, 215–225. [CrossRef][PubMed]
    [Google Scholar]
  7. Costerton J. W., Stewart P. S., Greenberg E. P.. ( 1999;). Bacterial biofilms: a common cause of persistent infections. . Science 284:, 1318–1322. [CrossRef][PubMed]
    [Google Scholar]
  8. Eberl L., Tümmler B.. ( 2004;). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. . Int J Med Microbiol 294:, 123–131. [CrossRef][PubMed]
    [Google Scholar]
  9. Feinbaum R. L., Urbach J. M., Liberati N. T., Djonovic S., Adonizio A., Carvunis A. R., Ausubel F. M.. ( 2012;). Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. . PLoS Pathog 8:, e1002813. [CrossRef][PubMed]
    [Google Scholar]
  10. Fick R. B. Jr, Sonoda F., Hornick D. B.. ( 1992;). Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway. . Semin Respir Infect 7:, 168–178.[PubMed]
    [Google Scholar]
  11. Fung C., Naughton S., Turnbull L., Tingpej P., Rose B., Arthur J., Hu H., Harmer C., Harbour C.. & other authors ( 2010;). Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. . J Med Microbiol 59:, 1089–1100. [CrossRef][PubMed]
    [Google Scholar]
  12. Gautier L., Cope L., Bolstad B. M., Irizarry R. A.. ( 2004;). affy—Analysis of Affymetrix GeneChip data at the probe level. . Bioinformatics 20:, 307–315. [CrossRef][PubMed]
    [Google Scholar]
  13. Govan J. R., Deretic V.. ( 1996;). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.. Microbiol Rev 60:, 539–574.[PubMed]
    [Google Scholar]
  14. Govan J. R., Doherty C. J., Nelson J. W., Brown P. H., Greening A. P., Maddison J., Dodd M., Webb A. K.. ( 1993;). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. . Lancet 342:, 15–19. [CrossRef][PubMed]
    [Google Scholar]
  15. Hare N. J., Solis N., Harmer C., Marzook N. B., Rose B., Harbour C., Crossett B., Manos J., Cordwell S. J.. ( 2012;). Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. . BMC Microbiol 12:, 16. [CrossRef][PubMed]
    [Google Scholar]
  16. Harmer C. J., Triccas J. A., Hu H., Rose B., Bye P., Elkins M., Manos J.. ( 2012;). Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time. . Microb Pathog 53:, 37–43. [CrossRef][PubMed]
    [Google Scholar]
  17. Heydorn A., Ersbøll B., Kato J., Hentzer M., Parsek M. R., Tolker-Nielsen T., Givskov M., Molin S.. ( 2002;). Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. . Appl Environ Microbiol 68:, 2008–2017. [CrossRef][PubMed]
    [Google Scholar]
  18. Hocquet D., Bertrand X., Köhler T., Talon D., Plésiat P.. ( 2003;). Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. . Antimicrob Agents Chemother 47:, 1887–1894. [CrossRef][PubMed]
    [Google Scholar]
  19. Hogardt M., Heesemann J.. ( 2010;). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. . Int J Med Microbiol 300:, 557–562. [CrossRef][PubMed]
    [Google Scholar]
  20. Hogardt M., Heesemann J.. ( 2013;). Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. . Curr Top Microbiol Immunol 358:, 91–118.[PubMed]
    [Google Scholar]
  21. Høiby N., Frederiksen B., Pressler T.. ( 2005;). Eradication of early Pseudomonas aeruginosa infection. . J Cyst Fibros 4: (Suppl. 2), 49–54. [CrossRef][PubMed]
    [Google Scholar]
  22. Høiby N., Ciofu O., Johansen H. K., Song Z. J., Moser C., Jensen P. O., Molin S., Givskov M., Tolker-Nielsen T., Bjarnsholt T.. ( 2011;). The clinical impact of bacterial biofilms. . Int J Oral Sci 3:, 55–65. [CrossRef][PubMed]
    [Google Scholar]
  23. Jones A. K., Fulcher N. B., Balzer G. J., Urbanowski M. L., Pritchett C. L., Schurr M. J., Yahr T. L., Wolfgang M. C.. ( 2010;). Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. . J Bacteriol 192:, 5709–5717. [CrossRef][PubMed]
    [Google Scholar]
  24. Kosorok M. R., Zeng L., West S. E., Rock M. J., Splaingard M. L., Laxova A., Green C. G., Collins J., Farrell P. M.. ( 2001;). Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. . Pediatr Pulmonol 32:, 277–287. [CrossRef][PubMed]
    [Google Scholar]
  25. Kurz C. L., Ewbank J. J.. ( 2000;). Caenorhabditis elegans for the study of host-pathogen interactions. . Trends Microbiol 8:, 142–144. [CrossRef][PubMed]
    [Google Scholar]
  26. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R.. ( 2006;). Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. . Mol Microbiol 59:, 142–151. [CrossRef][PubMed]
    [Google Scholar]
  27. Liang X., Pham X. Q., Olson M. V., Lory S.. ( 2001;). Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. . J Bacteriol 183:, 843–853. [CrossRef][PubMed]
    [Google Scholar]
  28. Luján A. M., Maciá M. D., Yang L., Molin S., Oliver A., Smania A. M.. ( 2011;). Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators. . PLoS ONE 6:, e27842. [CrossRef][PubMed]
    [Google Scholar]
  29. Manos J., Arthur J., Rose B., Tingpej P., Fung C., Curtis M., Webb J. S., Hu H., Kjelleberg S.. & other authors ( 2008;). Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. . J Med Microbiol 57:, 1454–1465. [CrossRef][PubMed]
    [Google Scholar]
  30. Manos J., Arthur J., Rose B., Bell S., Tingpej P., Hu H., Webb J., Kjelleberg S., Gorrell M. D.. & other authors ( 2009;). Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. . FEMS Microbiol Lett 292:, 107–114. [CrossRef][PubMed]
    [Google Scholar]
  31. Naughton S., Parker D., Seemann T., Thomas T., Turnbull L., Rose B., Bye P., Cordwell S., Whitchurch C., Manos J.. ( 2011;). Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung. . PLoS ONE 6:, e24526. [CrossRef][PubMed]
    [Google Scholar]
  32. Nixon G. M., Armstrong D. S., Carzino R., Carlin J. B., Olinsky A., Robertson C. F., Grimwood K.. ( 2001;). Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. . J Pediatr 138:, 699–704. [CrossRef][PubMed]
    [Google Scholar]
  33. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M.. ( 2005;). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. . J Bacteriol 187:, 5267–5277. [CrossRef][PubMed]
    [Google Scholar]
  34. Rampioni G., Schuster M., Greenberg E. P., Zennaro E., Leoni L.. ( 2009;). Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. . FEMS Microbiol Lett 301:, 210–217. [CrossRef][PubMed]
    [Google Scholar]
  35. Rao J., Damron F. H., Basler M., Digiandomenico A., Sherman N. E., Fox J. W., Mekalanos J. J., Goldberg J. B.. ( 2011;). Comparisons of two proteomic analyses of non-mucoid and mucoid Pseudomonas aeruginosa clinical isolates from a cystic fibrosis patient. . Front Microbiol 2:, 162. [CrossRef][PubMed]
    [Google Scholar]
  36. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Tümmler B., Winstanley C.. ( 2005;). A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. . J Bacteriol 187:, 4908–4920. [CrossRef][PubMed]
    [Google Scholar]
  37. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. ( 2003;). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. . J Bacteriol 185:, 2066–2079. [CrossRef][PubMed]
    [Google Scholar]
  38. Sifri C. D., Baresch-Bernal A., Calderwood S. B., von Eiff C.. ( 2006;). Virulence of Staphylococcus aureus small colony variants in the Caenorhabditis elegans infection model. . Infect Immun 74:, 1091–1096. [CrossRef][PubMed]
    [Google Scholar]
  39. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D’Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P.. & other authors ( 2006;). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. . Proc Natl Acad Sci U S A 103:, 8487–8492. [CrossRef][PubMed]
    [Google Scholar]
  40. Sonawane A., Jyot J., Ramphal R.. ( 2006;). Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. . Infect Immun 74:, 7035–7039. [CrossRef][PubMed]
    [Google Scholar]
  41. Sriramulu D. D., Lünsdorf H., Lam J. S., Römling U.. ( 2005;). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. . J Med Microbiol 54:, 667–676. [CrossRef][PubMed]
    [Google Scholar]
  42. Stenbit A. E., Flume P. A.. ( 2011;). Pulmonary exacerbations in cystic fibrosis. . Curr Opin Pulm Med 17:, 442–447.[PubMed]
    [Google Scholar]
  43. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M.. ( 1999;). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. . Proc Natl Acad Sci U S A 96:, 2408–2413. [CrossRef][PubMed]
    [Google Scholar]
  44. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B.. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  45. Tingpej P., Smith L., Rose B., Zhu H., Conibear T., Al Nassafi K., Manos J., Elkins M., Bye P.. & other authors ( 2007;). Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. . J Clin Microbiol 45:, 1697–1704. [CrossRef][PubMed]
    [Google Scholar]
  46. Tingpej P., Elkins M., Rose B., Hu H., Moriarty C., Manos J., Barras B., Bye P., Harbour C.. ( 2010;). Clinical profile of adult cystic fibrosis patients with frequent epidemic clones of Pseudomonas aeruginosa. . Respirology 15:, 923–929. [CrossRef][PubMed]
    [Google Scholar]
  47. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. ( 2003;). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. . J Bacteriol 185:, 2080–2095. [CrossRef][PubMed]
    [Google Scholar]
  48. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A.. ( 2005;). Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. . J Bacteriol 187:, 6571–6576. [CrossRef][PubMed]
    [Google Scholar]
  49. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P.. ( 2001;). Gene expression in Pseudomonas aeruginosa biofilms. . Nature 413:, 860–864. [CrossRef][PubMed]
    [Google Scholar]
  50. Winsor G. L., Lam D. K., Fleming L., Lo R., Whiteside M. D., Yu N. Y., Hancock R. E., Brinkman F. S.. ( 2011;). Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. . Nucleic Acids Res 39: (Database issue), D596–D600. [CrossRef][PubMed]
    [Google Scholar]
  51. Winstanley C., Langille M. G., Fothergill J. L., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N. R., Winsor G. L., Quail M. A.. & other authors ( 2009;). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. . Genome Res 19:, 12–23. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066985-0
Loading
/content/journal/micro/10.1099/mic.0.066985-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error