1887

Abstract

Chronic infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. isolates undergo significant transcriptomic and proteomic modulation as they adapt to the niche environment of the CF lung and the host defences. This study characterized the virulence of isogenic strain pairs of epidemic or frequent clonal complexes (FCCs) and non-epidemic or infrequent clonal complexes (IFCCs) that were collected 5–8 years apart from five chronically infected adult CF patients. Strains showed a significant decrease in virulence over the course of chronic infection using a slow-killing assay and in phenotypic tests for important virulence factors. This decrease in virulence correlated with numerous differentially expressed genes such as and . Microarray analysis identified a large genomic island deletion in the IFCC strain pair that included type three secretion system effector and fimbrial subunit genes. This study presents novel data to examine the transcriptomic profiles of sequentially collected from CF adults. The genes with virulence-related functions identified here present potential targets for new therapies and vaccines against FCCs and IFCCs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066985-0
2013-11-01
2021-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2354.html?itemId=/content/journal/micro/10.1099/mic.0.066985-0&mimeType=html&fmt=ahah

References

  1. Al-Aloul M., Crawley J., Winstanley C., Hart C. A., Ledson M. J., Walshaw M. J..( 2004;). Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax59:334–336 [CrossRef][PubMed]
    [Google Scholar]
  2. Armstrong D., Bell S., Robinson M., Bye P., Rose B., Harbour C., Lee C., Service H., Nissen M..& other authors ( 2003;). Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol41:2266–2267 [CrossRef][PubMed]
    [Google Scholar]
  3. Carter M. E., Fothergill J. L., Walshaw M. J., Rajakumar K., Kadioglu A., Winstanley C..( 2010;). A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. J Infect Dis202:935–942 [CrossRef][PubMed]
    [Google Scholar]
  4. Casadevall A., Pirofski L. A..( 2009;). Virulence factors and their mechanisms of action: the view from a damage-response framework. J Water Health7:Suppl. 1S2–S18 [CrossRef][PubMed]
    [Google Scholar]
  5. Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B. P., Faure K..( 2009;). Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun77:2065–2075 [CrossRef][PubMed]
    [Google Scholar]
  6. Ciofu O., Mandsberg L. F., Wang H., Høiby N..( 2012;). Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol65:215–225 [CrossRef][PubMed]
    [Google Scholar]
  7. Costerton J. W., Stewart P. S., Greenberg E. P..( 1999;). Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  8. Eberl L., Tümmler B..( 2004;). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol294:123–131 [CrossRef][PubMed]
    [Google Scholar]
  9. Feinbaum R. L., Urbach J. M., Liberati N. T., Djonovic S., Adonizio A., Carvunis A. R., Ausubel F. M..( 2012;). Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog8:e1002813 [CrossRef][PubMed]
    [Google Scholar]
  10. Fick R. B. Jr, Sonoda F., Hornick D. B..( 1992;). Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway. Semin Respir Infect7:168–178[PubMed]
    [Google Scholar]
  11. Fung C., Naughton S., Turnbull L., Tingpej P., Rose B., Arthur J., Hu H., Harmer C., Harbour C..& other authors ( 2010;). Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol59:1089–1100 [CrossRef][PubMed]
    [Google Scholar]
  12. Gautier L., Cope L., Bolstad B. M., Irizarry R. A..( 2004;). affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics20:307–315 [CrossRef][PubMed]
    [Google Scholar]
  13. Govan J. R., Deretic V..( 1996;). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.. Microbiol Rev60:539–574[PubMed]
    [Google Scholar]
  14. Govan J. R., Doherty C. J., Nelson J. W., Brown P. H., Greening A. P., Maddison J., Dodd M., Webb A. K..( 1993;). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet342:15–19 [CrossRef][PubMed]
    [Google Scholar]
  15. Hare N. J., Solis N., Harmer C., Marzook N. B., Rose B., Harbour C., Crossett B., Manos J., Cordwell S. J..( 2012;). Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. BMC Microbiol12:16 [CrossRef][PubMed]
    [Google Scholar]
  16. Harmer C. J., Triccas J. A., Hu H., Rose B., Bye P., Elkins M., Manos J..( 2012;). Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time. Microb Pathog53:37–43 [CrossRef][PubMed]
    [Google Scholar]
  17. Heydorn A., Ersbøll B., Kato J., Hentzer M., Parsek M. R., Tolker-Nielsen T., Givskov M., Molin S..( 2002;). Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol68:2008–2017 [CrossRef][PubMed]
    [Google Scholar]
  18. Hocquet D., Bertrand X., Köhler T., Talon D., Plésiat P..( 2003;). Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob Agents Chemother47:1887–1894 [CrossRef][PubMed]
    [Google Scholar]
  19. Hogardt M., Heesemann J..( 2010;). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol300:557–562 [CrossRef][PubMed]
    [Google Scholar]
  20. Hogardt M., Heesemann J..( 2013;). Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol358:91–118[PubMed]
    [Google Scholar]
  21. Høiby N., Frederiksen B., Pressler T..( 2005;). Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros4:Suppl. 249–54 [CrossRef][PubMed]
    [Google Scholar]
  22. Høiby N., Ciofu O., Johansen H. K., Song Z. J., Moser C., Jensen P. O., Molin S., Givskov M., Tolker-Nielsen T., Bjarnsholt T..( 2011;). The clinical impact of bacterial biofilms. Int J Oral Sci3:55–65 [CrossRef][PubMed]
    [Google Scholar]
  23. Jones A. K., Fulcher N. B., Balzer G. J., Urbanowski M. L., Pritchett C. L., Schurr M. J., Yahr T. L., Wolfgang M. C..( 2010;). Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol192:5709–5717 [CrossRef][PubMed]
    [Google Scholar]
  24. Kosorok M. R., Zeng L., West S. E., Rock M. J., Splaingard M. L., Laxova A., Green C. G., Collins J., Farrell P. M..( 2001;). Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol32:277–287 [CrossRef][PubMed]
    [Google Scholar]
  25. Kurz C. L., Ewbank J. J..( 2000;). Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol8:142–144 [CrossRef][PubMed]
    [Google Scholar]
  26. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R..( 2006;). Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol59:142–151 [CrossRef][PubMed]
    [Google Scholar]
  27. Liang X., Pham X. Q., Olson M. V., Lory S..( 2001;). Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol183:843–853 [CrossRef][PubMed]
    [Google Scholar]
  28. Luján A. M., Maciá M. D., Yang L., Molin S., Oliver A., Smania A. M..( 2011;). Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators. PLoS ONE6:e27842 [CrossRef][PubMed]
    [Google Scholar]
  29. Manos J., Arthur J., Rose B., Tingpej P., Fung C., Curtis M., Webb J. S., Hu H., Kjelleberg S..& other authors ( 2008;). Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J Med Microbiol57:1454–1465 [CrossRef][PubMed]
    [Google Scholar]
  30. Manos J., Arthur J., Rose B., Bell S., Tingpej P., Hu H., Webb J., Kjelleberg S., Gorrell M. D..& other authors ( 2009;). Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett292:107–114 [CrossRef][PubMed]
    [Google Scholar]
  31. Naughton S., Parker D., Seemann T., Thomas T., Turnbull L., Rose B., Bye P., Cordwell S., Whitchurch C., Manos J..( 2011;). Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung. PLoS ONE6:e24526 [CrossRef][PubMed]
    [Google Scholar]
  32. Nixon G. M., Armstrong D. S., Carzino R., Carlin J. B., Olinsky A., Robertson C. F., Grimwood K..( 2001;). Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr138:699–704 [CrossRef][PubMed]
    [Google Scholar]
  33. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M..( 2005;). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol187:5267–5277 [CrossRef][PubMed]
    [Google Scholar]
  34. Rampioni G., Schuster M., Greenberg E. P., Zennaro E., Leoni L..( 2009;). Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett301:210–217 [CrossRef][PubMed]
    [Google Scholar]
  35. Rao J., Damron F. H., Basler M., Digiandomenico A., Sherman N. E., Fox J. W., Mekalanos J. J., Goldberg J. B..( 2011;). Comparisons of two proteomic analyses of non-mucoid and mucoid Pseudomonas aeruginosa clinical isolates from a cystic fibrosis patient. Front Microbiol2:162 [CrossRef][PubMed]
    [Google Scholar]
  36. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Tümmler B., Winstanley C..( 2005;). A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol187:4908–4920 [CrossRef][PubMed]
    [Google Scholar]
  37. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P..( 2003;). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079 [CrossRef][PubMed]
    [Google Scholar]
  38. Sifri C. D., Baresch-Bernal A., Calderwood S. B., von Eiff C..( 2006;). Virulence of Staphylococcus aureus small colony variants in the Caenorhabditis elegans infection model. Infect Immun74:1091–1096 [CrossRef][PubMed]
    [Google Scholar]
  39. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D’Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P..& other authors ( 2006;). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A103:8487–8492 [CrossRef][PubMed]
    [Google Scholar]
  40. Sonawane A., Jyot J., Ramphal R..( 2006;). Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infect Immun74:7035–7039 [CrossRef][PubMed]
    [Google Scholar]
  41. Sriramulu D. D., Lünsdorf H., Lam J. S., Römling U..( 2005;). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol54:667–676 [CrossRef][PubMed]
    [Google Scholar]
  42. Stenbit A. E., Flume P. A..( 2011;). Pulmonary exacerbations in cystic fibrosis. Curr Opin Pulm Med17:442–447[PubMed]
    [Google Scholar]
  43. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M..( 1999;). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A96:2408–2413 [CrossRef][PubMed]
    [Google Scholar]
  44. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B..( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol33:2233–2239[PubMed]
    [Google Scholar]
  45. Tingpej P., Smith L., Rose B., Zhu H., Conibear T., Al Nassafi K., Manos J., Elkins M., Bye P..& other authors ( 2007;). Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol45:1697–1704 [CrossRef][PubMed]
    [Google Scholar]
  46. Tingpej P., Elkins M., Rose B., Hu H., Moriarty C., Manos J., Barras B., Bye P., Harbour C..( 2010;). Clinical profile of adult cystic fibrosis patients with frequent epidemic clones of Pseudomonas aeruginosa. Respirology15:923–929 [CrossRef][PubMed]
    [Google Scholar]
  47. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H..( 2003;). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095 [CrossRef][PubMed]
    [Google Scholar]
  48. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A..( 2005;). Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol187:6571–6576 [CrossRef][PubMed]
    [Google Scholar]
  49. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P..( 2001;). Gene expression in Pseudomonas aeruginosa biofilms. Nature413:860–864 [CrossRef][PubMed]
    [Google Scholar]
  50. Winsor G. L., Lam D. K., Fleming L., Lo R., Whiteside M. D., Yu N. Y., Hancock R. E., Brinkman F. S..( 2011;). Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res39:Database issueD596–D600 [CrossRef][PubMed]
    [Google Scholar]
  51. Winstanley C., Langille M. G., Fothergill J. L., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N. R., Winsor G. L., Quail M. A..& other authors ( 2009;). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res19:12–23 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066985-0
Loading
/content/journal/micro/10.1099/mic.0.066985-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error