1887

Abstract

In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from serovar Typhimurium (. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of , an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the . Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates expression. We demonstrate that, in the absence of BaeSR, the transcript levels of and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates by a direct interaction with the promoter region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066787-0
2013-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2049.html?itemId=/content/journal/micro/10.1099/mic.0.066787-0&mimeType=html&fmt=ahah

References

  1. Appia-Ayme C., Patrick E., Sullivan M. J., Alston M. J., Field S. J., AbuOun M., Anjum M. F., Rowley G.. ( 2011;). Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal. PLoS ONE6:e23713 [CrossRef][PubMed]
    [Google Scholar]
  2. Baranova N., Nikaido H.. ( 2002;). The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol184:4168–4176 [CrossRef][PubMed]
    [Google Scholar]
  3. Batchelor E., Goulian M.. ( 2003;). Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A100:691–696 [CrossRef][PubMed]
    [Google Scholar]
  4. Beauchamp C., Fridovich I.. ( 1971;). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem44:276–287 [CrossRef][PubMed]
    [Google Scholar]
  5. Cai S. J., Inouye M.. ( 2002;). EnvZ-OmpR interaction and osmoregulation in Escherichia coli. . J Biol Chem277:24155–24161 [CrossRef][PubMed]
    [Google Scholar]
  6. Cambau E., Gutmann L.. ( 1993;). Mechanisms of resistance to quinolones. Drugs45:Suppl. 315–23 [CrossRef][PubMed]
    [Google Scholar]
  7. De la Cruz M. A., Fernández-Mora M., Guadarrama C., Flores-Valdez M. A., Bustamante V. H., Vázquez A., Calva E.. ( 2007;). LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. . Mol Microbiol66:727–743 [CrossRef][PubMed]
    [Google Scholar]
  8. Drlica K., Zhao X.. ( 1997;). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev61:377–392[PubMed]
    [Google Scholar]
  9. Durand S., Storz G.. ( 2010;). Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol75:1215–1231 [CrossRef][PubMed]
    [Google Scholar]
  10. Fang F. C., DeGroote M. A., Foster J. W., Bäumler A. J., Ochsner U., Testerman T., Bearson S., Giárd J. C., Xu Y.. & other authors ( 1999;). Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A96:7502–7507 [CrossRef][PubMed]
    [Google Scholar]
  11. Figueroa-Bossi N., Bossi L.. ( 1999;). Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol33:167–176 [CrossRef][PubMed]
    [Google Scholar]
  12. Gil F., Ipinza F., Fuentes J., Fumeron R., Villarreal J. M., Aspée A., Mora G. C., Vásquez C. C., Saavedra C.. ( 2007;). The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar Typhimurium. Res Microbiol158:529–536 [CrossRef][PubMed]
    [Google Scholar]
  13. Gil F., Hernández-Lucas I., Polanco R., Pacheco N., Collao B., Villarreal J. M., Nardocci G., Calva E., Saavedra C. P.. ( 2009;). SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology155:2490–2497 [CrossRef][PubMed]
    [Google Scholar]
  14. Goswami M., Mangoli S. H., Jawali N.. ( 2006;). Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. . Antimicrob Agents Chemother50:949–954 [CrossRef][PubMed]
    [Google Scholar]
  15. Guerrero P., Collao B., Morales E. H., Calderón I. L., Ipinza F., Parra S., Saavedra C. P., Gil F.. ( 2012;). Characterization of the BaeSR two-component system from Salmonella Typhimurium and its role in ciprofloxacin-induced mdtA expression. Arch Microbiol194:453–460 [CrossRef][PubMed]
    [Google Scholar]
  16. Hu W. S., Li P.-C., Cheng C.-Y.. ( 2005;). Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system. Antimicrob Agents Chemother49:3955–3958 [CrossRef][PubMed]
    [Google Scholar]
  17. Jakubowski W., Biliński T., Bartosz G.. ( 2000;). Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. . Free Radic Biol Med28:659–664 [CrossRef][PubMed]
    [Google Scholar]
  18. Kaldalu N., Mei R., Lewis K.. ( 2004;). Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother48:890–896 [CrossRef][PubMed]
    [Google Scholar]
  19. Keren I., Wu Y., Inocencio J., Mulcahy L. R., Lewis K.. ( 2013;). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science339:1213–1216 [CrossRef][PubMed]
    [Google Scholar]
  20. Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A., Collins J. J.. ( 2007;). A common mechanism of cellular death induced by bactericidal antibiotics. Cell130:797–810 [CrossRef][PubMed]
    [Google Scholar]
  21. Korshunov S. S., Imlay J. A.. ( 2002;). A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol43:95–106 [CrossRef][PubMed]
    [Google Scholar]
  22. Leblanc S. K., Oates C. W., Raivio T. L.. ( 2011;). Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. . J Bacteriol193:3367–3375 [CrossRef][PubMed]
    [Google Scholar]
  23. Lindner B., Wiese A., Brandenburg K., Seydel U., Dalhoff A.. ( 2002;). Lack of interaction of fluoroquinolones with lipopolysaccharides. Antimicrob Agents Chemother46:1568–1570 [CrossRef][PubMed]
    [Google Scholar]
  24. Liu Y., Imlay J. A.. ( 2013;). Cell death from antibiotics without the involvement of reactive oxygen species. Science339:1210–1213 [CrossRef][PubMed]
    [Google Scholar]
  25. Martin R. G., Bartlett E. S., Rosner J. L., Wall M. E.. ( 2008;). Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration. J Mol Biol380:278–284 [CrossRef][PubMed]
    [Google Scholar]
  26. Massé E., Gottesman S.. ( 2002;). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. . Proc Natl Acad Sci U S A99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  27. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  28. Nagakubo S., Nishino K., Hirata T., Yamaguchi A.. ( 2002;). The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol184:4161–4167 [CrossRef][PubMed]
    [Google Scholar]
  29. Nagasawa S., Ishige K., Mizuno T.. ( 1993;). Novel members of the two-component signal transduction genes in Escherichia coli. . J Biochem114:350–357[PubMed]
    [Google Scholar]
  30. Niederhoffer E. C., Naranjo C. M., Bradley K. L., Fee J. A.. ( 1990;). Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol172:1930–1938[PubMed]
    [Google Scholar]
  31. Nishino K., Honda T., Yamaguchi A.. ( 2005;). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J Bacteriol187:1763–1772 [CrossRef][PubMed]
    [Google Scholar]
  32. Nishino K., Nikaido E., Yamaguchi A.. ( 2007;). Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol189:9066–9075 [CrossRef][PubMed]
    [Google Scholar]
  33. Pankey G. A., Sabath L. D.. ( 2004;). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis38:864–870 [CrossRef][PubMed]
    [Google Scholar]
  34. Partridge J. D., Bodenmiller D. M., Humphrys M. S., Spiro S.. ( 2009;). NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol73:680–694 [CrossRef][PubMed]
    [Google Scholar]
  35. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:45e [CrossRef][PubMed]
    [Google Scholar]
  36. Piddock L. J.. ( 2002;). Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev26:3–16[PubMed][CrossRef]
    [Google Scholar]
  37. Pomposiello P. J., Bennik M. H., Demple B.. ( 2001;). Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol183:3890–3902 [CrossRef][PubMed]
    [Google Scholar]
  38. Rosner J. L., Martin R. G.. ( 2013;). Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants. J Bacteriol195:1042–1050 [CrossRef][PubMed]
    [Google Scholar]
  39. Smirnova G., Samoilova Z., Muzyka N., Oktyabrsky O.. ( 2012;). Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli. . J Appl Microbiol113:192–199 [CrossRef][PubMed]
    [Google Scholar]
  40. Stock A. M., Robinson V. L., Goudreau P. N.. ( 2000;). Two-component signal transduction. Annu Rev Biochem69:183–215 [CrossRef][PubMed]
    [Google Scholar]
  41. Touati D.. ( 1983;). Cloning and mapping of the manganese superoxide dismutase gene (sodA) of Escherichia coli K-12. J Bacteriol155:1078–1087[PubMed]
    [Google Scholar]
  42. Walsh C.. ( 2000;). Molecular mechanisms that confer antibacterial drug resistance. Nature406:775–781 [CrossRef][PubMed]
    [Google Scholar]
  43. Wang D., Fierke C. A.. ( 2013;). The BaeSR regulon is involved in defense against zinc toxicity in E. coli. . Metallomics5:372–383 [CrossRef][PubMed]
    [Google Scholar]
  44. Yamamoto K., Ogasawara H., Ishihama A.. ( 2008;). Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli. . J Biotechnol133:196–200 [CrossRef][PubMed]
    [Google Scholar]
  45. Yu P.. ( 2007;). Enhancing survival of Escherichia coli by increasing the periplasmic expression of Cu,Zn superoxide dismutase from Saccharomyces cerevisiae. . Appl Microbiol Biotechnol76:867–871 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066787-0
Loading
/content/journal/micro/10.1099/mic.0.066787-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error