1887

Abstract

serotype O : 3 produces two types of lipopolysaccharide (LPS) molecules to its surface. In both types the lipid A (LA) structure is substituted by inner core (IC) octasaccharide to which either outer core (OC) hexasaccharide or homopolymeric O-polysaccharide (OPS) is linked. In addition, enterobacterial common antigen (ECA) can be covalently linked to LPS, however, via an unknown linkage. To elucidate the relationship between ECA and LPS in O : 3 and the effect of temperature on their expression, LPS was isolated from bacteria grown at 22 °C and 37 °C by consequent hot phenol/water and phenol-chloroform-light petroleum extractions to obtain LPS preparations free of ECA linked to glycerophospholipid. In immunoblotting, monoclonal antibodies TomA6 and 898, specific for OPS and ECA, respectively, reacted both with ladder-like bands and with a slower-migrating smear suggesting that the ECA and OPS epitopes coexist on the same molecules. These results were supported by immunoblotting with a monovalent O : 3 ECA-specific rabbit antiserum. Also, two or three 898-positive (and monovalent-positive) TomA6-negative bands migrated at the level of the LA–IC band in LPS samples from certain OC mutants, most likely representing LA–IC molecules carrying 1–3 ECA repeat units but no OPS. These bands were also present in O : 9 OC mutants; however, coexistence of ECA and OPS in the same molecules could not be detected. Finally, the LA–IC–ECA bands were missing from LPS of bacteria grown at 37 °C and also the general reduction in wild-type bacteria of ECA-specific monovalent-reactive material at 37 °C suggested that temperature regulates the expression of ECA. Indeed, RNA-sequencing analysis showed significant downregulation of the ECA biosynthetic gene cluster at 37 °C.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066662-0
2013-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1782.html?itemId=/content/journal/micro/10.1099/mic.0.066662-0&mimeType=html&fmt=ahah

References

  1. Acker G., Knapp W., Wartenberg K., Mayer H.. ( 1981;). Localization of enterobacterial common antigen in Yersinia enterocolitica by the immunoferritin technique. J Bacteriol147:602–611[PubMed]
    [Google Scholar]
  2. Acker G., Bitter-Suermann D., Meier-Dieter U., Peters H., Mayer H.. ( 1986;). Immunocytochemical localization of enterobacterial common antigen in Escherichia coli and Yersinia enterocolitica cells. J Bacteriol168:348–356[PubMed]
    [Google Scholar]
  3. al-Hendy A., Toivanen P., Skurnik M.. ( 1991a;). Expression cloning of Yersinia enterocolitica . rfb gene cluster in Escherichia coli K12. Microb Pathog10:47–59 [CrossRef][PubMed]
    [Google Scholar]
  4. al-Hendy A., Toivanen P., Skurnik M.. ( 1991b;). The effect of growth temperature on the biosynthesis of Yersinia enterocolitica . lipopolysaccharide: temperature regulates the transcription of the rfb but not of the rfa region. Microb Pathog10:81–86 [CrossRef][PubMed]
    [Google Scholar]
  5. al-Hendy A., Toivanen P., Skurnik M.. ( 1992;). Lipopolysaccharide O side chain of Yersinia enterocolitica . is an essential virulence factor in an orally infected murine model. Infect Immun60:870–875[PubMed]
    [Google Scholar]
  6. Barr K., Klena J., Rick P. D.. ( 1999;). The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of Escherichia coli K-12. J Bacteriol181:6564–6568[PubMed]
    [Google Scholar]
  7. Barua S., Yamashino T., Hasegawa T., Yokoyama K., Torii K., Ohta M.. ( 2002;). Involvement of surface polysaccharides in the organic acid resistance of Shiga toxin-producing Escherichia coli O157 : H7. Mol Microbiol43:629–640 [CrossRef][PubMed]
    [Google Scholar]
  8. Bengoechea J. A., Zhang L., Toivanen P., Skurnik M.. ( 2002;). Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol44:1045–1062 [CrossRef][PubMed]
    [Google Scholar]
  9. Biedzka-Sarek M., Venho R., Skurnik M.. ( 2005;). Role of YadA, Ail, and lipopolysaccharide in serum resistance of Yersinia enterocolitica serotype . Infect Immun73:2232–2244 [CrossRef][PubMed]
    [Google Scholar]
  10. Biedzka-Sarek M., Metso J., Kateifides A., Meri T., Jokiranta T. S., Muszyński A., Radziejewska-Lebrecht J., Zannis V., Skurnik M., Jauhiainen M.. ( 2011;). Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype. J Biol Chem286:38211–38219 [CrossRef][PubMed]
    [Google Scholar]
  11. Bottone E. J.. ( 1997;). Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev10:257–276[PubMed]
    [Google Scholar]
  12. Castelli M. E., Fedrigo G. V., Clementín A. L., Ielmini M. V., Feldman M. F., García Véscovi E.. ( 2008;). Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. . J Bacteriol190:213–220 [CrossRef][PubMed]
    [Google Scholar]
  13. Cornelis G. R., Boland A., Boyd A. P., Geuijen C., Iriarte M., Neyt C., Sory M.-P., Stainier I.. ( 1998;). The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev62:1315–1352[PubMed]
    [Google Scholar]
  14. Danese P. N., Oliver G. R., Barr K., Bowman G. D., Rick P. D., Silhavy T. J.. ( 1998;). Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. . J Bacteriol180:5875–5884[PubMed]
    [Google Scholar]
  15. Duda K. A., Duda K. T., Beczała A., Kasperkiewicz K., Radziejewska-Lebrecht J., Skurnik M.. ( 2009;). ECA-immunogenicity of Proteus mirabilis strains. Arch Immunol Ther Exp (Warsz)57:147–151 [CrossRef][PubMed]
    [Google Scholar]
  16. Galanos C., Lüderitz O., Westphal O.. ( 1969;). A new method for the extraction of R lipopolysaccharides. Eur J Biochem9:245–249 [CrossRef][PubMed]
    [Google Scholar]
  17. Goverde R. L., Huis in’t Veld J. H., Kusters J. G., Mooi F. R.. ( 1998;). The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5 °C). Mol Microbiol28:555–569 [CrossRef][PubMed]
    [Google Scholar]
  18. Hitchcock P. J., Brown T. M.. ( 1983;). Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277[PubMed]
    [Google Scholar]
  19. Hoffman J., Lindberg B., Brubaker R. R.. ( 1980;). Structural studies of the O-specific side-chains of the lipopolysaccharide from Yersinia enterocolitica Ye 128. Carbohydr Res78:212–214 [CrossRef][PubMed]
    [Google Scholar]
  20. Holst O.. 1999; Chemical structure of the core region of lipopolysaccharides. Endotoxin in Health and Disease115–154 Brade H., Opal S. M., Vogel S. N., Morrison D. C.. New York: Marcel Dekker Int;
    [Google Scholar]
  21. Holst O.. ( 2002;). Chemical structure of the core region of lipopolysaccharides – an update. Trends Glycosci Glycotechnol14:87–103 [CrossRef]
    [Google Scholar]
  22. Holst O.. ( 2007;). The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiol Lett271:3–11 [CrossRef][PubMed]
    [Google Scholar]
  23. Holst O.. ( 2011;). Structure of the lipopolysaccharide core region. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells21–39 Knirel A. Y., Valvano M. A.. Wien: Springer-Verlag; [CrossRef]
    [Google Scholar]
  24. Jann B., Reske K., Jann K.. ( 1975;). Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Eur J Biochem60:239–246 [CrossRef][PubMed]
    [Google Scholar]
  25. Jansson P.-E.. ( 1999;). The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides. Endotoxin in Health and Disease155–178 Brade H., Opal S. M., Vogel S. N., Morrison D. C.. New York: Marcel Dekker;
    [Google Scholar]
  26. Kaca W., de Jongh-Leuvenink J., Zähringer U., Rietschel E. T., Brade H., Verhoef J., Sinnwell V.. ( 1988;). Isolation and chemical analysis of 7-O-(2-amino-2-deoxy-alpha-d-glucopyranosyl)-l-glycero-d-manno-heptose as a constituent of the lipopolysaccharides of the UDP-galactose epimerase-less mutant J-5 of Escherichia coli and Vibrio cholerae. . Carbohydr Res179:289–299 [CrossRef][PubMed]
    [Google Scholar]
  27. Kajimura J., Rahman A., Rick P. D.. ( 2005;). Assembly of cyclic enterobacterial common antigen in Escherichia coli K-12. J Bacteriol187:6917–6927 [CrossRef][PubMed]
    [Google Scholar]
  28. Kasperkiewicz K., Skurnik M., Brade L., Muszyński A., Radziejewska-Lebrecht J.. ( 2004;). Monoclonal antibodies specific for lipid A and ECA as tools in characterisation of lipopolysaccharides from enterobacterial R mutants. 3rd German–Polish–Russian Meeting on Bacterial Carbohydrates, Wroclaw, Poland
    [Google Scholar]
  29. Knirel Y. A., Kochetkov N. K.. 1994; Structure of lipopolysaccharides from gram-negative bacteria. III. Structure of O-specific polysaccharides. Biochemistry (Moscow)59:1325–1383
    [Google Scholar]
  30. Kuhn H.-M., Meier-Dieter U., Mayer H.. ( 1988;). ECA, the enterobacterial common antigen. FEMS Microbiol Rev4:195–222[PubMed][CrossRef]
    [Google Scholar]
  31. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  32. Langmead B., Trapnell C., Pop M., Salzberg S. L.. ( 2009;). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol10:R25 [CrossRef][PubMed]
    [Google Scholar]
  33. Lowry O. H., Roberts N. R., Leiner K. Y., Wu M.-L., Farr A. L.. ( 1954;). The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem207:1–17[PubMed]
    [Google Scholar]
  34. Lugowski C., Romanowska E., Kenne L., Lindberg B.. ( 1983;). Identification of a trisaccharide repeating-unit in the enterobacterial common-antigen. Carbohydr Res118:173–181 [CrossRef]
    [Google Scholar]
  35. Männel D., Mäkelä P. H., Mayer H.. ( 1978;). Enterobacterial common antigen in mutant strains of Salmonella. . J Bacteriol135:348–353[PubMed]
    [Google Scholar]
  36. Meier-Dieter U., Acker G., Mayer H.. ( 1989;). Detection of enterobacterial common antigen on bacterial cell surfaces by colony-immunoblotting: effect of its linkage to lipopolysaccharide. FEMS Microbiol Lett59:215–219 [CrossRef][PubMed]
    [Google Scholar]
  37. Müller-Loennies S., Rund S., Ervelä E., Skurnik M., Holst O.. ( 1999;). The structure of the carbohydrate backbone of the core-lipid A region of the lipopolysaccharide from a clinical isolate of Yersinia enterocolitica . Eur J Biochem261:19–24 [CrossRef][PubMed]
    [Google Scholar]
  38. Munford R. S., Hall C. L., Rick P. D.. ( 1980;). Size heterogeneity of Salmonella typhimurium lipopolysaccharides in outer membranes and culture supernatant membrane fragments. J Bacteriol144:630–640[PubMed]
    [Google Scholar]
  39. Muszyński A.. ( 2004;). Characterisation of lipopolysaccharides from mutants of Yersinia enterocolitica O : 3 cultivated at different temperatures . PhD thesis, University of Silesia; Katowice, Poland:
  40. Nowotny A.. 1984; Heterogeneity of endotoxins. Handbook of Endotoxin. Vol 1, Chemistry of Endotoxin1–45 Rietschel R. T.. Amsterdam, The Netherlands: Elsevier;
    [Google Scholar]
  41. Ogasawara M., Granfors K., Kono D. H., Hill J. L., Yu D. T. Y.. ( 1985;). A Yersinia enterocolitica serotype . lipopolysaccharide-specific monoclonal antibody reacts more strongly with bacteria cultured at room temperature than those cultured at 37 °C. J Immunol135:553–559[PubMed]
    [Google Scholar]
  42. Pekkola-Heino K., Viljanen M. K., Ståhlberg T. H., Granfors K., Toivanen A.. ( 1987;). Monoclonal antibodies reacting selectively with core and O-polysaccharide of Yersinia enterocolitica . lipopolysaccharide. Acta Pathol Microbiol Immunol Scand [C]95:27–34[PubMed]
    [Google Scholar]
  43. Pinta E., Duda K. A., Hanuszkiewicz A., Kaczyński Z., Lindner B., Miller W. L., Hyytiäinen H., Vogel C., Borowski S.. & other authors ( 2009;). Identification and role of a 6-deoxy-4-keto-hexosamine in the lipopolysaccharide outer core of Yersinia enterocolitica serotype . Chemistry15:9747–9754 [CrossRef][PubMed]
    [Google Scholar]
  44. Pinta E., Li Z., Batzilla J., Pajunen M., Kasanen T., Rabsztyn K., Rakin A., Skurnik M.. ( 2012;). Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. . Mol Microbiol83:125–136 [CrossRef][PubMed]
    [Google Scholar]
  45. Rabsztyn K., Kasperkiewicz K., Duda K. A., Li C.-M., Łukasik M., Radziejewska-Lebrecht J., Skurnik M.. ( 2011;). Characterization of anti-ECA antibodies in rabbit antiserum against rough Yersinia enterocolitica . Biochemistry (Moscow)76:832–839 [CrossRef][PubMed]
    [Google Scholar]
  46. Radziejewska-Lebrecht J., Shashkov A. S., Stroobant V., Wartenberg K., Warth C., Mayer H.. ( 1994;). The inner core region of Yersinia enterocolitica Ye75R (. ) lipopolysaccharide. Eur J Biochem221:343–351 [CrossRef][PubMed]
    [Google Scholar]
  47. Radziejewska-Lebrecht J., Skurnik M., Shashkov A. S., Brade L., Rózalski A., Bartodziejska B., Mayer H.. ( 1998;). Immunochemical studies on R mutants of Yersinia enterocolitica . Acta Biochim Pol45:1011–1019[PubMed]
    [Google Scholar]
  48. Radziejewska-Lebrecht J., Kasperkiewicz K., Skurnik M., Brade L., Steinmetz I., Swierzko A. S., Muszyński A.. ( 2003;). ECA-antibodies in antisera against R mutants of Yersinia enterocolitica . The Genus Yersinia: Entering the Functional Genomic Era215–218 Skurnik M., Granfors K., Bengoechea J. A.. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  49. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700 [CrossRef][PubMed]
    [Google Scholar]
  50. Ramos-Morales F., Prieto A. I., Beuzón C. R., Holden D. W., Casadesús J.. ( 2003;). Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol185:5328–5332 [CrossRef][PubMed]
    [Google Scholar]
  51. Rebeil R., Ernst R. K., Gowen B. B., Miller S. I., Hinnebusch B. J.. ( 2004;). Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol52:1363–1373 [CrossRef][PubMed]
    [Google Scholar]
  52. Reinés M., Llobet E., Dahlström K. M., Pérez-Gutiérrez C., Llompart C. M., Torrecabota N., Salminen T. A., Bengoechea J. A.. ( 2012a;). Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog8:e1002978 [CrossRef][PubMed]
    [Google Scholar]
  53. Reinés M., Llobet E., Llompart C. M., Moranta D., Pérez-Gutiérrez C., Bengoechea J. A.. ( 2012b;). Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol194:3173–3188 [CrossRef][PubMed]
    [Google Scholar]
  54. Rivas R., Vizcaíno N., Buey R. M., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2001;). An effective, rapid and simple method for total RNA extraction from bacteria and yeast. J Microbiol Methods47:59–63 [CrossRef][PubMed]
    [Google Scholar]
  55. Seltmann G., Holst O.. ( 2001;). The outer membrane of the Gram-negative bacteria and their components. The Bacterial Cell Wall31–66 Seltmann G., Holst O.. Berlin: Springer-Verlag;
    [Google Scholar]
  56. Shashkov A. S., Radziejewska-Lebrecht J., Kochanowski H., Mayer H.. ( 1995;). The chemical structure of the outer core region of the Yersinia enterocolitica O : 3 lipopolysaccharide. 8th European Carbohydrate Symposium, Sevilla, Spain,
    [Google Scholar]
  57. Skurnik M.. ( 1984;). Lack of correlation between the presence of plasmids and fimbriae in Yersinia enterocolitica and Yersinia pseudotuberculosis. . J Appl Bacteriol56:355–363 [CrossRef][PubMed]
    [Google Scholar]
  58. Skurnik M.. ( 1999;). Molecular genetics of Yersinia lipopolysaccharide. Genetics of Bacterial Polysaccharides23–51 Goldberg J.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  59. Skurnik M., Venho R., Toivanen P., al-Hendy A.. ( 1995;). A novel locus of Yersinia enterocolitica serotype . involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol17:575–594 [CrossRef][PubMed]
    [Google Scholar]
  60. Skurnik M., Mikkola P., Toivanen P., Tertti R.. ( 1996;). Passive immunization with monoclonal antibodies specific for lipopolysaccharide (LPS) O-side chain protects mice against intravenous Yersinia enterocolitica serotype . infection. APMIS104:598–602 [CrossRef][PubMed]
    [Google Scholar]
  61. Skurnik M., Venho R., Bengoechea J.-A., Moriyón I.. ( 1999;). The lipopolysaccharide outer core of Yersinia enterocolitica serotype . is required for virulence and plays a role in outer membrane integrity. Mol Microbiol31:1443–1462 [CrossRef][PubMed]
    [Google Scholar]
  62. Skurnik M., Biedzka-Sarek M., Lübeck P. S., Blom T., Bengoechea J. A., Pérez-Gutiérrez C., Ahrens P., Hoorfar J.. ( 2007;). Characterization and biological role of the O-polysaccharide gene cluster of Yersinia enterocolitica serotype . J Bacteriol189:7244–7253 [CrossRef][PubMed]
    [Google Scholar]
  63. Tavío M. M., Vila J., Ruiz J., Ruiz J., Martín-Sánchez A. M., Jiménez de Anta M. T.. ( 2000;). Resolution of high-molecular-weight components in lipopolysaccharides of Escherichia coli, Morganella morganii, Citrobacter freundii and Citrobacter diversus strains with sodium dodecyl sulfate polyacrylamide gels. J Microbiol Methods39:145–148 [CrossRef][PubMed]
    [Google Scholar]
  64. Towbin H., Staehelin T., Gordon J.. ( 1979;). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354 [CrossRef][PubMed]
    [Google Scholar]
  65. Trapnell C., Hendrickson D. G., Sauvageau M., Goff L., Rinn J. L., Pachter L.. ( 2013;). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol31:46–53 [CrossRef][PubMed]
    [Google Scholar]
  66. Tsai C. M., Frasch C. E.. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119 [CrossRef][PubMed]
    [Google Scholar]
  67. Vinogradov E. V., Holst O., Thomas-Oates J. E., Broady K. W., Brade H.. ( 1992;). The structure of the O-antigenic polysaccharide from lipopolysaccharide of Vibrio cholerae strain H11 (non-O1). Eur J Biochem210:491–498 [CrossRef][PubMed]
    [Google Scholar]
  68. Wartenberg K., Knapp W., Ahamed N. M., Widemann C., Mayer H.. ( 1983;). Temperature-dependent changes in the sugar and fatty acid composition of lipopolysaccharide from Yersinia enterocolitica strains. Zentralbl Bakteriol Mikrobiol Hyg A 253:523–530
    [Google Scholar]
  69. Westphal O., Jann K.. ( 1965;). Bacterial lipopolysaccharide extraction with phenol-water and further applications of the procedure. Methods in Carbohydrate Chemistry83–91 Whistler R. L.. New York: Academic Press;
    [Google Scholar]
  70. Wren B. W.. ( 2003;). The yersiniae – a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol1:55–64 [CrossRef][PubMed]
    [Google Scholar]
  71. Zähringer U., Lindner B., Rietschel E. T.. ( 1994;). Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Advances in Carbohydrate Chemistry and Biochemistryvol. 50211–276 Horton D.. San Diego, USA: Academic Press; [CrossRef]
    [Google Scholar]
  72. Zähringer U., Lindner B., Rietschel E. T.. ( 1999;). Chemical structure of lipid A: recent advances in structural analysis of biologically active molecules. Endotoxin in Health and Disease93–114 Brade H., Opal S. M., Vogel S. N., Morrison D. C.. New York, USA: Marcel Dekker;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066662-0
Loading
/content/journal/micro/10.1099/mic.0.066662-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error