1887

Abstract

Difficulty overexpressing (eukaryotic) membrane proteins is generally considered as the major impediment in their structural and functional research. possesses many properties ideal for membrane protein expression. In order to investigate membrane protein expression in , we created a novel expression system by introducing Mistic, a short peptide previously identified in , into . The potential of this system was demonstrated in the overexpression of a eukaryotic membrane protein (pkjDes4) and a prokaryotic membrane protein (pkjLi), a newly isolated linoleate isomerase from . The expression levels reached up to 4.4 % and 45.2 % for pkjDes4 and pkjLi, respectively, which represented an exceptionally robust ability to overproduce membrane proteins. Moreover, the expressed pkjLi was functional, with its catalysing nature characterized for the first time in this species. Up to 0.852 mg ml conjugated linoleic acid was obtained during the linoleic acid conversion catalysed by the recombinant lactococcal strains. In summary, we established a membrane protein expression system in and examined its functionality. Our results demonstrate that the Mistic chaperoning strategy can be efficiently applied to hosts and show its extraordinary capacity to facilitate the high-yield production of intractable membrane proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066621-0
2013-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1002.html?itemId=/content/journal/micro/10.1099/mic.0.066621-0&mimeType=html&fmt=ahah

References

  1. Bernaudat F., Frelet-Barrand A., Pochon N., Dementin S., Hivin P., Boutigny S., Rioux J. B., Salvi D., Seigneurin-Berny D. & other authors ( 2011). Heterologous expression of membrane proteins: choosing the appropriate host. PLoS ONE 6:e29191 [View Article][PubMed]
    [Google Scholar]
  2. Deniaud A., Bernaudat F., Frelet-Barrand A., Juillan-Binard C., Vernet T., Rolland N., Pebay-Peyroula E. ( 2011). Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the Mistic strategy. Biochim Biophys Acta 1808:2059–2066 [View Article][PubMed]
    [Google Scholar]
  3. Drew D., Fröderberg L., Baars L., de Gier J. W. ( 2003). Assembly and overexpression of membrane proteins in Escherichia coli. . Biochim Biophys Acta 1610:3–10 [View Article][PubMed]
    [Google Scholar]
  4. Drew D., Lerch M., Kunji E., Slotboom D. J., de Gier J. W. ( 2006). Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313 [View Article][PubMed]
    [Google Scholar]
  5. Dvir H., Lundberg M. E., Maji S. K., Riek R., Choe S. ( 2009). Mistic: cellular localization, solution behavior, polymerization, and fibril formation. Protein Sci 18:1564–1570 [View Article][PubMed]
    [Google Scholar]
  6. Feilmeier B. J., Iseminger G., Schroeder D., Webber H., Phillips G. J. ( 2000). Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. . J Bacteriol 182:4068–4076 [View Article][PubMed]
    [Google Scholar]
  7. Fernández de Palencia P., Nieto C., Acebo P., Espinosa M., López P. ( 2000). Expression of green fluorescent protein in Lactococcus lactis. . FEMS Microbiol Lett 183:229–234[PubMed] [CrossRef]
    [Google Scholar]
  8. Krogh A. ( 2009). The TMHMM Server.
    [Google Scholar]
  9. Kuipers O. P., de Ruyter P. G. G. A., Kleerebezem M., de Vos W. M. ( 1998). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 [View Article]
    [Google Scholar]
  10. Kunji E. R., Slotboom D. J., Poolman B. ( 2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108 [View Article][PubMed]
    [Google Scholar]
  11. Kunji E. R., Chan K. W., Slotboom D. J., Floyd S., O’Connor R., Monné M. ( 2005). Eukaryotic membrane protein overproduction in Lactococcus lactis. . Curr Opin Biotechnol 16:546–551 [View Article][PubMed]
    [Google Scholar]
  12. Li X., Huang X., Shao X., Li L. ( 2009). [Functional cell surface display of endo-beta-1, 3-1, 4-glucanase in Lactococcus lactis using N-acetylmuraminidase as the anchoring motif]. Sheng Wu Gong Cheng Xue Bao 25:89–94[PubMed]
    [Google Scholar]
  13. Macouzet M., Robert N., Lee B. H. ( 2010). Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus. . Appl Microbiol Biotechnol 87:1737–1742 [View Article][PubMed]
    [Google Scholar]
  14. Marreddy R. K. R., Pinto J. P. C., Wolters J. C., Geertsma E. R., Fusetti F., Permentier H. P., Kuipers O. P., Kok J., Poolman B. ( 2011). The response of Lactococcus lactis to membrane protein production. PLoS ONE 6:e24060 [View Article][PubMed]
    [Google Scholar]
  15. Midgett C. R., Madden D. R. ( 2007). Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 160:265–274 [View Article][PubMed]
    [Google Scholar]
  16. Mierau I., Kleerebezem M. ( 2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. . Appl Microbiol Biotechnol 68:705–717 [View Article][PubMed]
    [Google Scholar]
  17. Monné M., Chan K. W., Slotboom D. J., Kunji E. R. S. ( 2005). Functional expression of eukaryotic membrane proteins in Lactococcus lactis. . Protein Sci 14:3048–3056 [View Article][PubMed]
    [Google Scholar]
  18. Niu Y., Kong J., Xu Y. ( 2008). A novel GFP-fused eukaryotic membrane protein expression system in Lactococcus lactis and its application to overexpression of an elongase. Curr Microbiol 57:423–428 [View Article][PubMed]
    [Google Scholar]
  19. Ogawa J., Kishino S., Ando A., Sugimoto S., Mihara K., Shimizu S. ( 2005). Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364 [View Article][PubMed]
    [Google Scholar]
  20. Petrovskaya L. E., Shulga A. A., Bocharova O. V., Ermolyuk Y. S., Kryukova E. A., Chupin V. V., Blommers M. J., Arseniev A. S., Kirpichnikov M. P. ( 2010). Expression of G-protein coupled receptors in Escherichia coli for structural studies. Biochemistry (Moscow) 75:881–891 [View Article][PubMed]
    [Google Scholar]
  21. Roosild T. P., Greenwald J., Vega M., Castronovo S., Riek R., Choe S. ( 2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:1317–1321 [View Article][PubMed]
    [Google Scholar]
  22. Roosild T. P., Vega M., Castronovo S., Choe S. ( 2006). Characterization of the family of Mistic homologues. BMC Struct Biol 6:10–15 [View Article][PubMed]
    [Google Scholar]
  23. Rosson R. A, Grund A. D., Deng M. D., Riera F. S. ( 2004). Linoleate isomerase. United States Patent 6743609
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Steen A., Wiederhold E., Gandhi T., Breitling R., Slotboom D. J. ( 2011). Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR. Mol Cell Proteomics 10:M000052–MCP200 [View Article][PubMed]
    [Google Scholar]
  26. Tonon T., Harvey D., Larson T. R., Graham I. A. ( 2003). Identification of a very long chain polyunsaturated fatty acid Δ4-desaturase from the microalga Pavlova lutheri. . FEBS Lett 553:440–444 [View Article][PubMed]
    [Google Scholar]
  27. Wagner S., Bader M. L., Drew D., de Gier J. W. ( 2006). Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371 [View Article][PubMed]
    [Google Scholar]
  28. Wells J. M., Wilson P. W., Page R. W. F. ( 1993). Improved cloning vectors and transformation procedure for Lactococcus lactis. . J Appl Bacteriol 74:629–636 [View Article][PubMed]
    [Google Scholar]
  29. Wieczorek A. S., Martin V. J. J. ( 2010). Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. . Microb Cell Fact 9:69 [View Article][PubMed]
    [Google Scholar]
  30. Xu H., Lee H. Y., Hwang B., Nam J. H., Kang H. Y., Ahn J. ( 2008). Kinetics of microbial hydrogenation of free linoleic acid to conjugated linoleic acids. J Appl Microbiol 105:2239–2247 [View Article][PubMed]
    [Google Scholar]
  31. Xu Y., Niu Y., Kong J. ( 2011). Heterologous overexpression of a novel delta-4 desaturase gene from the marine microalga Pavlova viridis in Escherichia coli as a Mistic fusion. World J Microbiol Biotechnol 27:2931–2937 [View Article]
    [Google Scholar]
  32. Zhou X. R., Robert S. S., Petrie J. R., Frampton D. M. F., Mansour M. P., Blackburn S. I., Nichols P. D., Green A. G., Singh S. P. ( 2007). Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066621-0
Loading
/content/journal/micro/10.1099/mic.0.066621-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error