1887

Abstract

Bacteria have evolved a set of regulatory pathways to adapt to the dynamic nutritional environment during the course of infection. However, the underlying mechanism of the regulatory effects by nutritional cues on bacterial pathogenesis is unclear. In the present study, we showed that the catabolite repression control protein regulates the quinolone signal quorum sensing, which further controls synthesis of virulence factor pyocyanin, biofilm formation and survival during infection models. Our study suggests that deregulation of the catabolite repression by might enhance its fitness during cystic fibrosis infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066266-0
2013-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1931.html?itemId=/content/journal/micro/10.1099/mic.0.066266-0&mimeType=html&fmt=ahah

References

  1. Almengor A. C., Kinkel T. L., Day S. J., McIver K. S.. ( 2007;). The catabolite control protein CcpA binds to Pmga and influences expression of the virulence regulator Mga in the Group A streptococcus. . J Bacteriol 189:, 8405–8416. [CrossRef][PubMed]
    [Google Scholar]
  2. Banin E., Vasil M. L., Greenberg E. P.. ( 2005;). Iron and Pseudomonas aeruginosa biofilm formation. . Proc Natl Acad Sci U S A 102:, 11076–11081. [CrossRef][PubMed]
    [Google Scholar]
  3. D’Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C.. ( 2002;). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. . J Bacteriol 184:, 6481–6489. [CrossRef][PubMed]
    [Google Scholar]
  4. Das T., Kutty S. K., Kumar N., Manefield M.. ( 2013;). Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. . PLoS ONE 8:, e58299. [CrossRef][PubMed]
    [Google Scholar]
  5. Diggle S. P., Lumjiaktase P., Dipilato F., Winzer K., Kunakorn M., Barrett D. A., Chhabra S. R., Cámara M., Williams P.. ( 2006;). Functional genetic analysis reveals a 2-alkyl-4-quinolone signalling system in the human pathogen Burkholderia pseudomallei and related bacteria. . Chem Biol 13:, 701–710. [CrossRef][PubMed]
    [Google Scholar]
  6. Essar D. W., Eberly L., Hadero A., Crawford I. P.. ( 1990;). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. . J Bacteriol 172:, 884–900.[PubMed]
    [Google Scholar]
  7. Fletcher M. P., Diggle S. P., Cámara M., Williams P.. ( 2007;). Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. . Nat Protoc 2:, 1254–1262. [CrossRef][PubMed]
    [Google Scholar]
  8. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C.. ( 2002;). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. . J Bacteriol 184:, 6472–6480. [CrossRef][PubMed]
    [Google Scholar]
  9. Gilbreth S. E., Benson A. K., Hutkins R. W.. ( 2004;). Catabolite repression and virulence gene expression in Listeria monocytogenes. . Curr Microbiol 49:, 95–98. [CrossRef][PubMed]
    [Google Scholar]
  10. Görke B., Stülke J.. ( 2008;). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. . Nat Rev Microbiol 6:, 613–624. [CrossRef][PubMed]
    [Google Scholar]
  11. Hoffman L. R., Richardson A. R., Houston L. S., Kulasekara H. D., Martens-Habbena W., Klausen M., Burns J. L., Stahl D. A., Hassett D. J.. & other authors ( 2010;). Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. . PLoS Pathog 6:, e1000712. [CrossRef][PubMed]
    [Google Scholar]
  12. Jensen P. O., Givskov M., Bjarnsholt T., Moser C.. ( 2010;). The immune system vs. Pseudomonas aeruginosa biofilms. . FEMS Immunol Med Microbiol 59:, 292–305.[PubMed]
    [Google Scholar]
  13. Klausen M., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. ( 2003;). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. . Mol Microbiol 50:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
  14. Linares J. F., Moreno R., Fajardo A., Martínez-Solano L., Escalante R., Rojo F., Martínez J. L.. ( 2010;). The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. . Environ Microbiol 12:, 3196–3212. [CrossRef][PubMed]
    [Google Scholar]
  15. Lyczak J. B., Cannon C. L., Pier G. B.. ( 2000;). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. . Microbes Infect 2:, 1051–1060. [CrossRef][PubMed]
    [Google Scholar]
  16. McAdam P. R., Holmes A., Templeton K. E., Fitzgerald J. R.. ( 2011;). Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. . PLoS ONE 6:, e24301. [CrossRef][PubMed]
    [Google Scholar]
  17. Nudler E., Mironov A. S.. ( 2004;). The riboswitch control of bacterial metabolism. . Trends Biochem Sci 29:, 11–17. [CrossRef][PubMed]
    [Google Scholar]
  18. O’Toole G. A., Gibbs K. A., Hager P. W., Phibbs P. V. Jr, Kolter R.. ( 2000;). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. . J Bacteriol 182:, 425–431. [CrossRef][PubMed]
    [Google Scholar]
  19. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M.. ( 2005;). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. . J Bacteriol 187:, 5267–5277. [CrossRef][PubMed]
    [Google Scholar]
  20. Palmer K. L., Aye L. M., Whiteley M.. ( 2007;). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. . J Bacteriol 189:, 8079–8087. [CrossRef][PubMed]
    [Google Scholar]
  21. Pearson J. P., Pesci E. C., Iglewski B. H.. ( 1997;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. . J Bacteriol 179:, 5756–5767.[PubMed]
    [Google Scholar]
  22. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.. ( 1999;). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 96:, 11229–11234. [CrossRef][PubMed]
    [Google Scholar]
  23. Rohmer L., Hocquet D., Miller S. I.. ( 2011;). Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. . Trends Microbiol 19:, 341–348. [CrossRef][PubMed]
    [Google Scholar]
  24. Shrout J. D., Chopp D. L., Just C. L., Hentzer M., Givskov M., Parsek M. R.. ( 2006;). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. . Mol Microbiol 62:, 1264–1277. [CrossRef][PubMed]
    [Google Scholar]
  25. Silo-Suh L., Suh S. J., Phibbs P. V., Ohman D. E.. ( 2005;). Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf, encoding glucose-6-phosphate dehydrogenase. . J Bacteriol 187:, 7561–7568. [CrossRef][PubMed]
    [Google Scholar]
  26. Song Z., Wu H., Ciofu O., Kong K. F., Høiby N., Rygaard J., Kharazmi A., Mathee K.. ( 2003;). Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. . J Med Microbiol 52:, 731–740. [CrossRef][PubMed]
    [Google Scholar]
  27. Sonnleitner E., Valentini M., Wenner N., Haichar F. Z., Haas D., Lapouge K.. ( 2012;). Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa. . PLoS ONE 7:, e44637. [CrossRef][PubMed]
    [Google Scholar]
  28. Sternberg C., Tolker-Nielsen T.. ( 2006;). Growing and analyzing biofilms in flow cells. . Curr Protoc Microbiol, 1B.2.1�–1B.2.15. [CrossRef][PubMed]
    [Google Scholar]
  29. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef][PubMed]
    [Google Scholar]
  30. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. ( 2003;). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. . J Bacteriol 185:, 2080–2095. [CrossRef][PubMed]
    [Google Scholar]
  31. Wang J. D., Levin P. A.. ( 2009;). Metabolism, cell growth and the bacterial cell cycle. . Nat Rev Microbiol 7:, 822–827. [CrossRef][PubMed]
    [Google Scholar]
  32. Wolff J. A., MacGregor C. H., Eisenberg R. C., Phibbs P. V. Jr. ( 1991;). Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. . J Bacteriol 173:, 4700–4706.[PubMed]
    [Google Scholar]
  33. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T.. ( 2007;). Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. . Microbiology 153:, 1318–1328. [CrossRef][PubMed]
    [Google Scholar]
  34. Yang L., Nilsson M., Gjermansen M., Givskov M., Tolker-Nielsen T.. ( 2009;). Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. . Mol Microbiol 74:, 1380–1392. [CrossRef][PubMed]
    [Google Scholar]
  35. Yang L., Jelsbak L., Marvig R. L., Damkiær S., Workman C. T., Rau M. H., Hansen S. K., Folkesson A., Johansen H. K.. & other authors ( 2011a;). Evolutionary dynamics of bacteria in a human host environment. . Proc Natl Acad Sci U S A 108:, 7481–7486. [CrossRef][PubMed]
    [Google Scholar]
  36. Yang L., Liu Y., Markussen T., Høiby N., Tolker-Nielsen T., Molin S.. ( 2011b;). Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. . FEMS Immunol Med Microbiol 62:, 339–347. [CrossRef][PubMed]
    [Google Scholar]
  37. Yang L., Rau M. H., Yang L., Høiby N., Molin S., Jelsbak L.. ( 2011c;). Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. . BMC Microbiol 11:, 184. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang L., Chiang W. C., Gao Q., Givskov M., Tolker-Nielsen T., Yang L., Zhang G.. ( 2012;). The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. . Microbiology 158:, 3014–3019. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066266-0
Loading
/content/journal/micro/10.1099/mic.0.066266-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error