1887

Abstract

Despite the enormous contributions of the bacterial paradigms and to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable and systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places , an organism that evolved in close association with the human host, as a novel Gram-positive model organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066134-0
2013-03-01
2020-05-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/436.html?itemId=/content/journal/micro/10.1099/mic.0.066134-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Chen Y. Y., Burne R. A.. ( 2003;). Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol69:4760–4769 [CrossRef][PubMed]
    [Google Scholar]
  2. Abranches J., Nascimento M. M., Zeng L., Browngardt C. M., Wen Z. T., Rivera M. F., Burne R. A.. ( 2008;). CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans . J Bacteriol190:2340–2349 [CrossRef][PubMed]
    [Google Scholar]
  3. Abranches J., Martinez A. R., Kajfasz J. K., Chávez V., Garsin D. A., Lemos J. A.. ( 2009;). The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis . J Bacteriol191:2248–2256 [CrossRef][PubMed]
    [Google Scholar]
  4. Abranches J., Miller J. H., Martinez A. R., Simpson-Haidaris P. J., Burne R. A., Lemos J. A.. ( 2011;). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun79:2277–2284 [CrossRef][PubMed]
    [Google Scholar]
  5. Ahn S. J., Wen Z. T., Burne R. A.. ( 2006;). Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun74:1631–1642 [CrossRef][PubMed]
    [Google Scholar]
  6. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. & other authors ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A99:14434–14439 [CrossRef][PubMed]
    [Google Scholar]
  7. Ambatipudi K. S., Hagen F. K., Delahunty C. M., Han X., Shafi R., Hryhorenko J., Gregoire S., Marquis R. E., Melvin J. E.. & other authors ( 2010;). Human common salivary protein 1 (CSP-1) promotes binding of Streptococcus mutans to experimental salivary pellicle and glucans formed on hydroxyapatite surface. J Proteome Res9:6605–6614 [CrossRef][PubMed]
    [Google Scholar]
  8. Atkinson G. C., Tenson T., Hauryliuk V.. ( 2011;). The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE6:e23479 [CrossRef][PubMed]
    [Google Scholar]
  9. Atlagic D., Kiliç A. O., Tao L.. ( 2006;). Unmarked gene deletion mutagenesis of gtfB and gtfC in Streptococcus mutans using a targeted hit-and-run strategy with a thermosensitive plasmid. Oral Microbiol Immunol21:132–135 [CrossRef][PubMed]
    [Google Scholar]
  10. Bahn S. L., Goveia G., Bitterman P., Bahn A. N.. ( 1978;). Experimental endocarditis induced by dental manipulation and oral streptococci. Oral Surg Oral Med Oral Pathol45:549–559 [CrossRef][PubMed]
    [Google Scholar]
  11. Banas J. A., Vickerman M. M.. ( 2003;). Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med14:89–99 [CrossRef][PubMed]
    [Google Scholar]
  12. Banerjee A., Biswas I.. ( 2008;). Markerless multiple-gene-deletion system for Streptococcus mutans . Appl Environ Microbiol74:2037–2042 [CrossRef][PubMed]
    [Google Scholar]
  13. Battesti A., Bouveret E.. ( 2009;). Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. J Bacteriol191:616–624 [CrossRef][PubMed]
    [Google Scholar]
  14. Becker M. R., Paster B. J., Leys E. J., Moeschberger M. L., Kenyon S. G., Galvin J. L., Boches S. K., Dewhirst F. E., Griffen A. L.. ( 2002;). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol40:1001–1009 [CrossRef][PubMed]
    [Google Scholar]
  15. Belli W. A., Marquis R. E.. ( 1991;). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol57:1134–1138[PubMed]
    [Google Scholar]
  16. Bender G. R., Sutton S. V., Marquis R. E.. ( 1986;). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun53:331–338[PubMed]
    [Google Scholar]
  17. Bowen W. H., Koo H.. ( 2011;). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res45:69–86 [CrossRef][PubMed]
    [Google Scholar]
  18. Bradshaw D. J., Marsh P. D.. ( 1998;). Analysis of pH-driven disruption of oral microbial communities in vitro . Caries Res32:456–462 [CrossRef][PubMed]
    [Google Scholar]
  19. Bradshaw D. J., Marsh P. D.. ( 1999;). Use of continuous flow techniques in modeling dental plaque biofilms. Methods Enzymol310:279–296 [CrossRef][PubMed]
    [Google Scholar]
  20. Burne R. A.. ( 1998;). Oral streptococci... products of their environment. J Dent Res77:445–452 [CrossRef][PubMed]
    [Google Scholar]
  21. Burne R. A., Chen Y. Y., Wexler D. L., Kuramitsu H., Bowen W. H.. ( 1996;). Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res75:1572–1577 [CrossRef][PubMed]
    [Google Scholar]
  22. Carlsson J.. ( 1983;). Regulation of sugar metabolism in relation to feast-and-famine existence of plaque. Cariology Today Guggenheim B.. Basel: Karger;
    [Google Scholar]
  23. Catalán M. A., Scott-Anne K., Klein M. I., Koo H., Bowen W. H., Melvin J. E.. ( 2011;). Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS ONE6:e16549 [CrossRef][PubMed]
    [Google Scholar]
  24. Clarke J. K.. ( 1924;). On the bacterial factor in the etiology of dental caries. Br J Exp Pathol5:141–147
    [Google Scholar]
  25. Claverys J. P., Havarstein L. S.. ( 2002;). Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae . Front Biosci7:d1798–d1814 [CrossRef][PubMed]
    [Google Scholar]
  26. Cornejo O. E., Lefebure T., Bitar P. D., Lang P., Richards V. P., Eilertson K., Do T., Beighton D., Zeng L.. & other authors ( 2012;). Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans . Mol Biol Evol [CrossRef][PubMed]
    [Google Scholar]
  27. Culp D. J., Quivey R. Q., Bowen W. H., Fallon M. A., Pearson S. K., Faustoferri R.. ( 2005;). A mouse caries model and evaluation of Aqp5−/− knockout mice. Caries Res39:448–454 [CrossRef][PubMed]
    [Google Scholar]
  28. Das B., Pal R. R., Bag S., Bhadra R. K.. ( 2009;). Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol72:380–398 [CrossRef][PubMed]
    [Google Scholar]
  29. Fitzgerald R. J., Keyes P. H.. ( 1960;). Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc61:9–19[PubMed][CrossRef]
    [Google Scholar]
  30. Fontaine L., Boutry C., de Frahan M. H., Delplace B., Fremaux C., Horvath P., Boyaval P., Hols P.. ( 2010;). A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius . J Bacteriol192:1444–1454 [CrossRef][PubMed]
    [Google Scholar]
  31. Fozo E. M., Quivey R. G. Jr. ( 2004;). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol186:4152–4158 [CrossRef][PubMed]
    [Google Scholar]
  32. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr. ( 2007;). Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . Infect Immun75:1537–1539 [CrossRef][PubMed]
    [Google Scholar]
  33. Funes S., Hasona A., Bauerschmitt H., Grubbauer C., Kauff F., Collins R., Crowley P. J., Palmer S. R., Brady L. J., Herrmann J. M.. ( 2009;). Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci U S A106:6656–6661 [CrossRef][PubMed]
    [Google Scholar]
  34. Gibbons R. J.. ( 1989;). Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res68:750–760 [CrossRef][PubMed]
    [Google Scholar]
  35. Gonzalez K., Faustoferri R. C., Quivey R. G. Jr. ( 2012;). Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans . Mol Microbiol85:361–377 [CrossRef][PubMed]
    [Google Scholar]
  36. Gregoire S., Xiao J., Silva B. B., Gonzalez I., Agidi P. S., Klein M. I., Ambatipudi K. S., Rosalen P. L., Bauserman R.. & other authors ( 2011;). Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol77:6357–6367 [CrossRef][PubMed]
    [Google Scholar]
  37. Gross E. L., Leys E. J., Gasparovich S. R., Firestone N. D., Schwartzbaum J. A., Janies D. A., Asnani K., Griffen A. L.. ( 2010;). Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol48:4121–4128 [CrossRef][PubMed]
    [Google Scholar]
  38. Gross E. L., Beall C. J., Kutsch S. R., Firestone N. D., Leys E. J., Griffen A. L.. ( 2012;). Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE7:e47722 [CrossRef][PubMed]
    [Google Scholar]
  39. Hasona A., Crowley P. J., Levesque C. M., Mair R. W., Cvitkovitch D. G., Bleiweis A. S., Brady L. J.. ( 2005;). Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci U S A102:17466–17471 [CrossRef][PubMed]
    [Google Scholar]
  40. Jenkinson H. F.. ( 2011;). Beyond the oral microbiome. Environ Microbiol13:3077–3087 [CrossRef][PubMed]
    [Google Scholar]
  41. Jung C. J., Zheng Q. H., Shieh Y. H., Lin C. S., Chia J. S.. ( 2009;). Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol74:888–902 [CrossRef][PubMed]
    [Google Scholar]
  42. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A.. ( 2010;). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . J Bacteriol192:2546–2556 [CrossRef][PubMed]
    [Google Scholar]
  43. Keenan R. J., Freymann D. M., Stroud R. M., Walter P.. ( 2001;). The signal recognition particle. Annu Rev Biochem70:755–775 [CrossRef][PubMed]
    [Google Scholar]
  44. Klein M. I., Xiao J., Lu B., Delahunty C. M., Yates J. R. III, Koo H.. ( 2012;). Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS ONE7:e45795 [CrossRef][PubMed]
    [Google Scholar]
  45. Koo H., Schobel B., Scott-Anne K., Watson G., Bowen W. H., Cury J. A., Rosalen P. L., Park Y. K.. ( 2005;). Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res84:1016–1020 [CrossRef][PubMed]
    [Google Scholar]
  46. Koo H., Xiao J., Klein M. I., Jeon J. G.. ( 2010;). Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol192:3024–3032 [CrossRef][PubMed]
    [Google Scholar]
  47. Kreth J., Merritt J., Shi W., Qi F.. ( 2005;). Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol57:392–404 [CrossRef][PubMed]
    [Google Scholar]
  48. Kreth J., Zhang Y., Herzberg M. C.. ( 2008;). Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans . J Bacteriol190:4632–4640 [CrossRef][PubMed]
    [Google Scholar]
  49. Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W.. ( 2007;). Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev71:653–670 [CrossRef][PubMed]
    [Google Scholar]
  50. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. ( 2002;). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods49:193–205 [CrossRef][PubMed]
    [Google Scholar]
  51. Lemos J. A., Burne R. A.. ( 2008;). A model of efficiency: stress tolerance by Streptococcus mutans . Microbiology154:3247–3255 [CrossRef][PubMed]
    [Google Scholar]
  52. Lemos J. A., Brown T. A. Jr, Burne R. A.. ( 2004;). Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun72:1431–1440 [CrossRef][PubMed]
    [Google Scholar]
  53. Lemos J. A., Abranches J., Burne R. A.. ( 2005;). Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol7:95–107[PubMed]
    [Google Scholar]
  54. Lemos J. A., Lin V. K., Nascimento M. M., Abranches J., Burne R. A.. ( 2007a;). Three gene products govern (p)ppGpp production by Streptococcus mutans . Mol Microbiol65:1568–1581 [CrossRef][PubMed]
    [Google Scholar]
  55. Lemos J. A., Luzardo Y., Burne R. A.. ( 2007b;). Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans . J Bacteriol189:1582–1588 [CrossRef][PubMed]
    [Google Scholar]
  56. Lemos J. A., Abranches J., Koo H., Marquis R. E., Burne R. A.. ( 2010;). Protocols to study the physiology of oral biofilms. Methods Mol Biol666:87–102 [CrossRef][PubMed]
    [Google Scholar]
  57. Li Y., Burne R. A.. ( 2001;). Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology147:2841–2848[PubMed]
    [Google Scholar]
  58. Liu J., Wu C., Huang I. H., Merritt J., Qi F.. ( 2011;). Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology157:2433–2444 [CrossRef][PubMed]
    [Google Scholar]
  59. Loesche W. J.. ( 1986;). Role of Streptococcus mutans in human dental decay. Microbiol Rev50:353–380[PubMed]
    [Google Scholar]
  60. Marrakchi H., Choi K. H., Rock C. O.. ( 2002;). A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae . J Biol Chem277:44809–44816 [CrossRef][PubMed]
    [Google Scholar]
  61. Marsh P. D.. ( 1994;). Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res8:263–271[PubMed]
    [Google Scholar]
  62. Martin B., Quentin Y., Fichant G., Claverys J. P.. ( 2006;). Independent evolution of competence regulatory cascades in streptococci?. Trends Microbiol14:339–345 [CrossRef][PubMed]
    [Google Scholar]
  63. Mashburn-Warren L., Morrison D. A., Federle M. J.. ( 2010;). A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol78:589–606 [CrossRef][PubMed]
    [Google Scholar]
  64. Matsui R., Cvitkovitch D.. ( 2010;). Acid tolerance mechanisms utilized by Streptococcus mutans . Future Microbiol5:403–417 [CrossRef][PubMed]
    [Google Scholar]
  65. McCabe R. M., Donkersloot J. A.. ( 1977;). Adherence of Veillonella species mediated by extracellular glucosyltransferase from Streptococcus salivarius . Infect Immun18:726–734[PubMed]
    [Google Scholar]
  66. McDermid A. S., McKee A. S., Ellwood D. C., Marsh P. D.. ( 1986;). The effect of lowering the pH on the composition and metabolism of a community of nine oral bacteria grown in a chemostat. J Gen Microbiol132:1205–1214[PubMed]
    [Google Scholar]
  67. Merritt J., Qi F.. ( 2012;). The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol27:57–69 [CrossRef][PubMed]
    [Google Scholar]
  68. Merritt J., Tsang P., Zheng L., Shi W., Qi F.. ( 2007;). Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans . Oral Microbiol Immunol22:95–102 [CrossRef][PubMed]
    [Google Scholar]
  69. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y.. ( 2008;). Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis . Mol Microbiol67:291–304 [CrossRef][PubMed]
    [Google Scholar]
  70. Nicolas G. G., Lavoie M. C.. ( 2011;). [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol57:1–20 [CrossRef][PubMed]
    [Google Scholar]
  71. Nobbs A. H., Lamont R. J., Jenkinson H. F.. ( 2009;). Streptococcus adherence and colonization. Microbiol Mol Biol Rev73:407–450 [CrossRef][PubMed]
    [Google Scholar]
  72. Oli M. W., Otoo H. N., Crowley P. J., Heim K. P., Nascimento M. M., Ramsook C. B., Lipke P. N., Brady L. J.. ( 2012;). Functional amyloid formation by Streptococcus mutans . Microbiology158:2903–2916 [CrossRef][PubMed]
    [Google Scholar]
  73. Orland F. J., Blayney J. R., Harrison R. W., Reyniers J. A., Trexler P. C., Ervin R. F., Gordon H. A., Wagner M.. ( 1955;). Experimental caries in germfree rats inoculated with enterococci. J Am Dent Assoc50:259–272[PubMed][CrossRef]
    [Google Scholar]
  74. Paik S., Brown A., Munro C. L., Cornelissen C. N., Kitten T.. ( 2003;). The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol185:5967–5975 [CrossRef][PubMed]
    [Google Scholar]
  75. Palmer R. J. Jr. ( 2010;). Supragingival and subgingival plaque: paradigm of biofilms. Compend Contin Educ Dent31:104–106, 108, 110 passim, quiz 124, 138[PubMed]
    [Google Scholar]
  76. Perry J. A., Jones M. B., Peterson S. N., Cvitkovitch D. G., Lévesque C. M.. ( 2009;). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol72:905–917 [CrossRef][PubMed]
    [Google Scholar]
  77. Phillips G. J., Silhavy T. J.. ( 1992;). The E. coli ffh gene is necessary for viability and efficient protein export. Nature359:744–746 [CrossRef][PubMed]
    [Google Scholar]
  78. Potrykus K., Cashel M.. ( 2008;). (p)ppGpp: still magical?. Annu Rev Microbiol62:35–51 [CrossRef][PubMed]
    [Google Scholar]
  79. Quivey R. G. Jr, Faustoferri R., Monahan K., Marquis R.. ( 2000;). Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans . FEMS Microbiol Lett189:89–92 [CrossRef][PubMed]
    [Google Scholar]
  80. Quivey R. G., Kuhnert W. L., Hahn K.. ( 2001;). Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med12:301–314 [CrossRef][PubMed]
    [Google Scholar]
  81. Schilling K. M., Bowen W. H.. ( 1992;). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans . Infect Immun60:284–295[PubMed]
    [Google Scholar]
  82. Shu M., Browngardt C. M., Chen Y. Y., Burne R. A.. ( 2003;). Role of urease enzymes in stability of a 10-species oral biofilm consortium cultivated in a constant-depth film fermenter. Infect Immun71:7188–7192 [CrossRef][PubMed]
    [Google Scholar]
  83. Smith E. G., Spatafora G. A.. ( 2012;). Gene regulation in S. mutans: complex control in a complex environment. J Dent Res91:133–141 [CrossRef][PubMed]
    [Google Scholar]
  84. Son M., Ahn S. J., Guo Q., Burne R. A., Hagen S. J.. ( 2012;). Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX . Mol Microbiol86:258–272 [CrossRef][PubMed]
    [Google Scholar]
  85. Sturr M. G., Marquis R. E.. ( 1992;). Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria. Appl Environ Microbiol58:2287–2291[PubMed]
    [Google Scholar]
  86. Sun D., Lee G., Lee J. H., Kim H. Y., Rhee H. W., Park S. Y., Kim K. J., Kim Y., Kim B. Y.. & other authors ( 2010;). A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol17:1188–1194 [CrossRef][PubMed]
    [Google Scholar]
  87. Suntharalingam P., Cvitkovitch D. G.. ( 2005;). Quorum sensing in streptococcal biofilm formation. Trends Microbiol13:3–6 [CrossRef][PubMed]
    [Google Scholar]
  88. Sutton S. V., Marquis R. E.. ( 1987;). Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis . J Dent Res66:1095–1098 [CrossRef][PubMed]
    [Google Scholar]
  89. Tanner A. C., Kent R. L. Jr, Holgerson P. L., Hughes C. V., Loo C. Y., Kanasi E., Chalmers N. I., Johansson I.. ( 2011a;). Microbiota of severe early childhood caries before and after therapy. J Dent Res90:1298–1305 [CrossRef][PubMed]
    [Google Scholar]
  90. Tanner A. C., Mathney J. M., Kent R. L., Chalmers N. I., Hughes C. V., Loo C. Y., Pradhan N., Kanasi E., Hwang J.. & other authors ( 2011b;). Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol49:1464–1474 [CrossRef][PubMed]
    [Google Scholar]
  91. Tong H., Chen W., Merritt J., Qi F., Shi W., Dong X.. ( 2007;). Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol Microbiol63:872–880 [CrossRef][PubMed]
    [Google Scholar]
  92. Vacca-Smith A. M., Bowen W. H.. ( 1998;). Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol43:103–110 [CrossRef][PubMed]
    [Google Scholar]
  93. Wang B., Kuramitsu H. K.. ( 2005;). Inducible antisense RNA expression in the characterization of gene functions in Streptococcus mutans . Infect Immun73:3568–3576 [CrossRef][PubMed]
    [Google Scholar]
  94. Wen Z. T., Burne R. A.. ( 2001;). Construction of a new integration vector for use in Streptococcus mutans . Plasmid45:31–36 [CrossRef][PubMed]
    [Google Scholar]
  95. Whitmore S. E., Lamont R. J.. ( 2011;). The pathogenic persona of community-associated oral streptococci. Mol Microbiol81:305–314 [CrossRef][PubMed]
    [Google Scholar]
  96. Xiao J., Klein M. I., Falsetta M. L., Lu B., Delahunty C. M., Yates J. R. III, Heydorn A., Koo H.. ( 2012;). The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog8:e1002623 [CrossRef][PubMed]
    [Google Scholar]
  97. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K.. ( 1993;). Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun61:3811–3817[PubMed]
    [Google Scholar]
  98. Zeng L., Burne R. A.. ( 2008;). Multiple sugar : phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans . Mol Microbiol70:197–208 [CrossRef][PubMed]
    [Google Scholar]
  99. Zeng L., Burne R. A.. ( 2009;). Transcriptional regulation of the cellobiose operon of Streptococcus mutans . J Bacteriol191:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
  100. Zeng L., Burne R. A.. ( 2010;). Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans . Mol Microbiol75:1145–1158 [CrossRef][PubMed]
    [Google Scholar]
  101. Zeng L., Wen Z. T., Burne R. A.. ( 2006;). A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans . Mol Microbiol62:187–200 [CrossRef][PubMed]
    [Google Scholar]
  102. Zinner D. D., Jablon J. M., Aran A. P., Saslaw M. S.. ( 1965;). Experimental caries induced in animals by streptococci of human origin. Proc Soc Exp Biol Med118:766–770[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066134-0
Loading
/content/journal/micro/10.1099/mic.0.066134-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error