1887

Abstract

The general stress response of alphaproteobacteria is regulated by a partner-switching mechanism that involves the alternative sigma factor σ, the anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. To address the question of how the PhyR–NepR–σ cascade is activated and modulated in , a forward genetic screen was applied. The screen identified the single-domain response regulator Mext_0407 as a novel regulatory element in the general stress response of . Analysis of phenotypes and of transcriptional fusions of PhyR-dependent genes shows that the deletion mutant fails to respond to various stresses. Mext_0407 requires the putative phosphorylatable aspartate-64 for its activity and genetic evidence indicates that Mext_0407 operates upstream of the PhyR–NepR–σ cascade.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066068-0
2013-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1067.html?itemId=/content/journal/micro/10.1099/mic.0.066068-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Martinez C. E., Lourenço R. F., Baldini R. L., Laub M. T., Gomes S. L.. ( 2007;). The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. . Mol Microbiol 66:, 1240–1255. [CrossRef][PubMed]
    [Google Scholar]
  2. Bastiat B., Sauviac L., Bruand C.. ( 2010;). Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators. . J Bacteriol 192:, 2255–2265. [CrossRef][PubMed]
    [Google Scholar]
  3. Becker G., Klauck E., Hengge-Aronis R.. ( 1999;). Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. . Proc Natl Acad Sci U S A 96:, 6439–6444. [CrossRef][PubMed]
    [Google Scholar]
  4. Biondi E. G., Skerker J. M., Arif M., Prasol M. S., Perchuk B. S., Laub M. T.. ( 2006;). A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. . Mol Microbiol 59:, 386–401. [CrossRef][PubMed]
    [Google Scholar]
  5. Bourret R. B.. ( 2010;). Receiver domain structure and function in response regulator proteins. . Curr Opin Microbiol 13:, 142–149. [CrossRef][PubMed]
    [Google Scholar]
  6. Campagne S., Damberger F. F., Kaczmarczyk A., Francez-Charlot A., Allain F. H., Vorholt J. A.. ( 2012;). Structural basis for sigma factor mimicry in the general stress response of alphaproteobacteria. . Proc Natl Acad Sci U S A 109:, E1405–E1414. [CrossRef][PubMed]
    [Google Scholar]
  7. Casino P., Rubio V., Marina A.. ( 2009;). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. . Cell 139:, 325–336. [CrossRef][PubMed]
    [Google Scholar]
  8. Cormack B., Castaño I.. ( 2002;). Introduction of point mutations into cloned genes. . Methods Enzymol 350:, 199–218. [CrossRef][PubMed]
    [Google Scholar]
  9. Das S., Noe J. C., Paik S., Kitten T.. ( 2005;). An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. . J Microbiol Methods 63:, 89–94. [CrossRef][PubMed]
    [Google Scholar]
  10. Fan J., Crooks C., Lamb C.. ( 2008;). High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. . Plant J 53:, 393–399. [CrossRef][PubMed]
    [Google Scholar]
  11. Foreman R., Fiebig A., Crosson S.. ( 2012;). The LovK–LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus. . J Bacteriol 194:, 3038–3049. [CrossRef][PubMed]
    [Google Scholar]
  12. Francez-Charlot A., Frunzke J., Reichen C., Ebneter J. Z., Gourion B., Vorholt J. A.. ( 2009;). Sigma factor mimicry involved in regulation of general stress response. . Proc Natl Acad Sci U S A 106:, 3467–3472. [CrossRef][PubMed]
    [Google Scholar]
  13. Francez-Charlot A., Frunzke J., Vorholt J. A.. ( 2010;). The general stress response in alphaproteobacteria. . In Bacterial Stress Responses, pp. 291–300. Edited by Storz G., Hengge R... Washington, DC:: ASM Press;.
    [Google Scholar]
  14. Galperin M. Y.. ( 2006;). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. . J Bacteriol 188:, 4169–4182. [CrossRef][PubMed]
    [Google Scholar]
  15. Gao R., Stock A. M.. ( 2009;). Biological insights from structures of two-component proteins. . Annu Rev Microbiol 63:, 133–154. [CrossRef][PubMed]
    [Google Scholar]
  16. Gao R., Mack T. R., Stock A. M.. ( 2007;). Bacterial response regulators: versatile regulatory strategies from common domains. . Trends Biochem Sci 32:, 225–234. [CrossRef][PubMed]
    [Google Scholar]
  17. Gourion B., Rossignol M., Vorholt J. A.. ( 2006;). A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. . Proc Natl Acad Sci U S A 103:, 13186–13191. [CrossRef][PubMed]
    [Google Scholar]
  18. Gourion B., Francez-Charlot A., Vorholt J. A.. ( 2008;). PhyR is involved in the general stress response of Methylobacterium extorquens AM1. . J Bacteriol 190:, 1027–1035. [CrossRef][PubMed]
    [Google Scholar]
  19. Gourion B., Sulser S., Frunzke J., Francez-Charlot A., Stiefel P., Pessi G., Vorholt J. A., Fischer H. M.. ( 2009;). The PhyR-σ(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. . Mol Microbiol 73:, 291–305. [CrossRef][PubMed]
    [Google Scholar]
  20. Hecker M., Pané-Farré J., Völker U.. ( 2007;). SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. . Annu Rev Microbiol 61:, 215–236. [CrossRef][PubMed]
    [Google Scholar]
  21. Hengge R.. ( 2009;). Proteolysis of σS (RpoS) and the general stress response in Escherichia coli. . Res Microbiol 160:, 667–676. [CrossRef][PubMed]
    [Google Scholar]
  22. Hengge R.. ( 2010;). General stress response in Gram-negative bacteria. . In Bacterial Stress Responses, pp. 251–289. Edited by Storz G., Hengge R... Washington, DC:: ASM Press;.
    [Google Scholar]
  23. Herrou J., Foreman R., Fiebig A., Crosson S.. ( 2010;). A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator. . Mol Microbiol 78:, 290–304. [CrossRef][PubMed]
    [Google Scholar]
  24. Iniesta A. A., McGrath P. T., Reisenauer A., McAdams H. H., Shapiro L.. ( 2006;). A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. . Proc Natl Acad Sci U S A 103:, 10935–10940. [CrossRef][PubMed]
    [Google Scholar]
  25. Jenal U., Galperin M. Y.. ( 2009;). Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. . Curr Opin Microbiol 12:, 152–160. [CrossRef][PubMed]
    [Google Scholar]
  26. Kaczmarczyk A., Campagne S., Danza F., Metzger L. C., Vorholt J. A., Francez-Charlot A.. ( 2011;). Role of Sphingomonas sp. strain Fr1 PhyR-NepR-σEcfG cascade in general stress response and identification of a negative regulator of PhyR. . J Bacteriol 193:, 6629–6638. [CrossRef][PubMed]
    [Google Scholar]
  27. Knief C., Frances L., Vorholt J. A.. ( 2010;). Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. . Microb Ecol 60:, 440–452. [CrossRef][PubMed]
    [Google Scholar]
  28. Lampe D. J., Akerley B. J., Rubin E. J., Mekalanos J. J., Robertson H. M.. ( 1999;). Hyperactive transposase mutants of the Himar1 mariner transposon. . Proc Natl Acad Sci U S A 96:, 11428–11433. [CrossRef][PubMed]
    [Google Scholar]
  29. Lourenço R. F., Kohler C., Gomes S. L.. ( 2011;). A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. . Mol Microbiol 80:, 1598–1612. [CrossRef][PubMed]
    [Google Scholar]
  30. Marx C. J., Lidstrom M. E.. ( 2001;). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. . Microbiology 147:, 2065–2075.[PubMed]
    [Google Scholar]
  31. Marx C. J., Bringel F., Chistoserdova L., Moulin L., Farhan Ul Haque M., Fleischman D. E., Gruffaz C., Jourand P., Knief C.. & other authors ( 2012;). Complete genome sequences of six strains of the genus Methylobacterium. . J Bacteriol 194:, 4746–4748. [CrossRef][PubMed]
    [Google Scholar]
  32. McGrath P. T., Iniesta A. A., Ryan K. R., Shapiro L., McAdams H. H.. ( 2006;). A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. . Cell 124:, 535–547. [CrossRef][PubMed]
    [Google Scholar]
  33. Paul R., Jaeger T., Abel S., Wiederkehr I., Folcher M., Biondi E. G., Laub M. T., Jenal U.. ( 2008;). Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. . Cell 133:, 452–461. [CrossRef][PubMed]
    [Google Scholar]
  34. Peyraud R., Kiefer P., Christen P., Massou S., Portais J. C., Vorholt J. A.. ( 2009;). Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. . Proc Natl Acad Sci U S A 106:, 4846–4851. [CrossRef][PubMed]
    [Google Scholar]
  35. Price C. W.. ( 2010;). General stress response in Bacillus subtilis and related Gram-positive bacteria. . In Bacterial Stress Responses, pp. 301–318. Edited by Storz G., Hengge R... Washington, DC:: ASM Press;.
    [Google Scholar]
  36. Ryan K. R., Huntwork S., Shapiro L.. ( 2004;). Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. . Proc Natl Acad Sci U S A 101:, 7415–7420. [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D.. ( 2001;). Molecular cloning: a laboratory manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  38. Sauviac L., Philippe H., Phok K., Bruand C.. ( 2007;). An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. . J Bacteriol 189:, 4204–4216. [CrossRef][PubMed]
    [Google Scholar]
  39. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene 145:, 69–73. [CrossRef][PubMed]
    [Google Scholar]
  40. Skerker J. M., Perchuk B. S., Siryaporn A., Lubin E. A., Ashenberg O., Goulian M., Laub M. T.. ( 2008;). Rewiring the specificity of two-component signal transduction systems. . Cell 133:, 1043–1054. [CrossRef][PubMed]
    [Google Scholar]
  41. Staroń A., Mascher T.. ( 2010;). General stress response in α-proteobacteria: PhyR and beyond. . Mol Microbiol 78:, 271–277. [CrossRef][PubMed]
    [Google Scholar]
  42. Staroń A., Sofia H. J., Dietrich S., Ulrich L. E., Liesegang H., Mascher T.. ( 2009;). The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. . Mol Microbiol 74:, 557–581. [CrossRef][PubMed]
    [Google Scholar]
  43. Toyama H., Anthony C., Lidstrom M. E.. ( 1998;). Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. . FEMS Microbiol Lett 166:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  44. Vogel C., Innerebner G., Zingg J., Guder J., Vorholt J. A.. ( 2012;). Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp. strain Fr1 against Pseudomonas syringae DC3000. . Appl Environ Microbiol 78:, 5529–5535. [CrossRef][PubMed]
    [Google Scholar]
  45. Vuilleumier S., Chistoserdova L., Lee M. C., Bringel F., Lajus A., Zhou Y., Gourion B., Barbe V., Chang J.. & other authors ( 2009;). Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. . PLoS ONE 4:, e5584. [CrossRef][PubMed]
    [Google Scholar]
  46. Welch M., Oosawa K., Aizawa S., Eisenbach M.. ( 1993;). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. . Proc Natl Acad Sci U S A 90:, 8787–8791. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066068-0
Loading
/content/journal/micro/10.1099/mic.0.066068-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error