1887

Abstract

The general stress response of alphaproteobacteria is regulated by a partner-switching mechanism that involves the alternative sigma factor σ, the anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. To address the question of how the PhyR–NepR–σ cascade is activated and modulated in , a forward genetic screen was applied. The screen identified the single-domain response regulator Mext_0407 as a novel regulatory element in the general stress response of . Analysis of phenotypes and of transcriptional fusions of PhyR-dependent genes shows that the deletion mutant fails to respond to various stresses. Mext_0407 requires the putative phosphorylatable aspartate-64 for its activity and genetic evidence indicates that Mext_0407 operates upstream of the PhyR–NepR–σ cascade.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066068-0
2013-06-01
2022-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1067.html?itemId=/content/journal/micro/10.1099/mic.0.066068-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Martinez C. E., Lourenço R. F., Baldini R. L., Laub M. T., Gomes S. L.( 2007). The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol Microbiol 66:1240–1255 [View Article][PubMed]
    [Google Scholar]
  2. Bastiat B., Sauviac L., Bruand C.( 2010). Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators. J Bacteriol 192:2255–2265 [View Article][PubMed]
    [Google Scholar]
  3. Becker G., Klauck E., Hengge-Aronis R.( 1999). Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci U S A 96:6439–6444 [View Article][PubMed]
    [Google Scholar]
  4. Biondi E. G., Skerker J. M., Arif M., Prasol M. S., Perchuk B. S., Laub M. T.( 2006). A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol Microbiol 59:386–401 [View Article][PubMed]
    [Google Scholar]
  5. Bourret R. B.( 2010). Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13:142–149 [View Article][PubMed]
    [Google Scholar]
  6. Campagne S., Damberger F. F., Kaczmarczyk A., Francez-Charlot A., Allain F. H., Vorholt J. A.( 2012). Structural basis for sigma factor mimicry in the general stress response of alphaproteobacteria. Proc Natl Acad Sci U S A 109:E1405–E1414 [View Article][PubMed]
    [Google Scholar]
  7. Casino P., Rubio V., Marina A.( 2009). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:325–336 [View Article][PubMed]
    [Google Scholar]
  8. Cormack B., Castaño I.( 2002). Introduction of point mutations into cloned genes. Methods Enzymol 350:199–218 [View Article][PubMed]
    [Google Scholar]
  9. Das S., Noe J. C., Paik S., Kitten T.( 2005). An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods 63:89–94 [View Article][PubMed]
    [Google Scholar]
  10. Fan J., Crooks C., Lamb C.( 2008). High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J 53:393–399 [View Article][PubMed]
    [Google Scholar]
  11. Foreman R., Fiebig A., Crosson S.( 2012). The LovK–LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus. J Bacteriol 194:3038–3049 [View Article][PubMed]
    [Google Scholar]
  12. Francez-Charlot A., Frunzke J., Reichen C., Ebneter J. Z., Gourion B., Vorholt J. A.( 2009). Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci U S A 106:3467–3472 [View Article][PubMed]
    [Google Scholar]
  13. Francez-Charlot A., Frunzke J., Vorholt J. A.( 2010). The general stress response in alphaproteobacteria. Bacterial Stress Responses291–300 Storz G., Hengge R. Washington, DC: ASM Press;
    [Google Scholar]
  14. Galperin M. Y.( 2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182 [View Article][PubMed]
    [Google Scholar]
  15. Gao R., Stock A. M.( 2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154 [View Article][PubMed]
    [Google Scholar]
  16. Gao R., Mack T. R., Stock A. M.( 2007). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234 [View Article][PubMed]
    [Google Scholar]
  17. Gourion B., Rossignol M., Vorholt J. A.( 2006). A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191 [View Article][PubMed]
    [Google Scholar]
  18. Gourion B., Francez-Charlot A., Vorholt J. A.( 2008). PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J Bacteriol 190:1027–1035 [View Article][PubMed]
    [Google Scholar]
  19. Gourion B., Sulser S., Frunzke J., Francez-Charlot A., Stiefel P., Pessi G., Vorholt J. A., Fischer H. M.( 2009). The PhyR-σ(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol Microbiol 73:291–305 [View Article][PubMed]
    [Google Scholar]
  20. Hecker M., Pané-Farré J., Völker U.( 2007). SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61:215–236 [View Article][PubMed]
    [Google Scholar]
  21. Hengge R.( 2009). Proteolysis of σS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160:667–676 [View Article][PubMed]
    [Google Scholar]
  22. Hengge R.( 2010). General stress response in Gram-negative bacteria. Bacterial Stress Responses251–289 Storz G., Hengge R. Washington, DC: ASM Press;
    [Google Scholar]
  23. Herrou J., Foreman R., Fiebig A., Crosson S.( 2010). A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator. Mol Microbiol 78:290–304 [View Article][PubMed]
    [Google Scholar]
  24. Iniesta A. A., McGrath P. T., Reisenauer A., McAdams H. H., Shapiro L.( 2006). A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci U S A 103:10935–10940 [View Article][PubMed]
    [Google Scholar]
  25. Jenal U., Galperin M. Y.( 2009). Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr Opin Microbiol 12:152–160 [View Article][PubMed]
    [Google Scholar]
  26. Kaczmarczyk A., Campagne S., Danza F., Metzger L. C., Vorholt J. A., Francez-Charlot A.( 2011). Role of Sphingomonas sp. strain Fr1 PhyR-NepR-σEcfG cascade in general stress response and identification of a negative regulator of PhyR. J Bacteriol 193:6629–6638 [View Article][PubMed]
    [Google Scholar]
  27. Knief C., Frances L., Vorholt J. A.( 2010). Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452 [View Article][PubMed]
    [Google Scholar]
  28. Lampe D. J., Akerley B. J., Rubin E. J., Mekalanos J. J., Robertson H. M.( 1999). Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A 96:11428–11433 [View Article][PubMed]
    [Google Scholar]
  29. Lourenço R. F., Kohler C., Gomes S. L.( 2011). A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol Microbiol 80:1598–1612 [View Article][PubMed]
    [Google Scholar]
  30. Marx C. J., Lidstrom M. E.( 2001). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075[PubMed]
    [Google Scholar]
  31. Marx C. J., Bringel F., Chistoserdova L., Moulin L., Farhan Ul Haque M., Fleischman D. E., Gruffaz C., Jourand P., Knief C.& other authors ( 2012). Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748 [View Article][PubMed]
    [Google Scholar]
  32. McGrath P. T., Iniesta A. A., Ryan K. R., Shapiro L., McAdams H. H.( 2006). A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124:535–547 [View Article][PubMed]
    [Google Scholar]
  33. Paul R., Jaeger T., Abel S., Wiederkehr I., Folcher M., Biondi E. G., Laub M. T., Jenal U.( 2008). Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133:452–461 [View Article][PubMed]
    [Google Scholar]
  34. Peyraud R., Kiefer P., Christen P., Massou S., Portais J. C., Vorholt J. A.( 2009). Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci U S A 106:4846–4851 [View Article][PubMed]
    [Google Scholar]
  35. Price C. W.( 2010). General stress response in Bacillus subtilis and related Gram-positive bacteria. Bacterial Stress Responses301–318 Storz G., Hengge R. Washington, DC: ASM Press;
    [Google Scholar]
  36. Ryan K. R., Huntwork S., Shapiro L.( 2004). Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. Proc Natl Acad Sci U S A 101:7415–7420 [View Article][PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D.( 2001). Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  38. Sauviac L., Philippe H., Phok K., Bruand C.( 2007). An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 189:4204–4216 [View Article][PubMed]
    [Google Scholar]
  39. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.( 1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73 [View Article][PubMed]
    [Google Scholar]
  40. Skerker J. M., Perchuk B. S., Siryaporn A., Lubin E. A., Ashenberg O., Goulian M., Laub M. T.( 2008). Rewiring the specificity of two-component signal transduction systems. Cell 133:1043–1054 [View Article][PubMed]
    [Google Scholar]
  41. Staroń A., Mascher T.( 2010). General stress response in α-proteobacteria: PhyR and beyond. Mol Microbiol 78:271–277 [View Article][PubMed]
    [Google Scholar]
  42. Staroń A., Sofia H. J., Dietrich S., Ulrich L. E., Liesegang H., Mascher T.( 2009). The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. Mol Microbiol 74:557–581 [View Article][PubMed]
    [Google Scholar]
  43. Toyama H., Anthony C., Lidstrom M. E.( 1998). Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol Lett 166:1–7 [View Article][PubMed]
    [Google Scholar]
  44. Vogel C., Innerebner G., Zingg J., Guder J., Vorholt J. A.( 2012). Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp. strain Fr1 against Pseudomonas syringae DC3000. Appl Environ Microbiol 78:5529–5535 [View Article][PubMed]
    [Google Scholar]
  45. Vuilleumier S., Chistoserdova L., Lee M. C., Bringel F., Lajus A., Zhou Y., Gourion B., Barbe V., Chang J.& other authors ( 2009). Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4:e5584 [View Article][PubMed]
    [Google Scholar]
  46. Welch M., Oosawa K., Aizawa S., Eisenbach M.( 1993). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 90:8787–8791 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066068-0
Loading
/content/journal/micro/10.1099/mic.0.066068-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error