1887

Abstract

OmpW is a minor porin whose biological function has not been clearly defined. Evidence obtained in our laboratory indicates that in serovar Typhimurium the expression of OmpW is activated by SoxS upon exposure to paraquat and it is required for resistance. SoxS belongs to the AraC family of transcriptional regulators, like MarA and Rob. Due to their high structural similarity, the genes under their control have been grouped in the // regulon, which presents a DNA-binding consensus sequence denominated the box. In this work, we evaluated the role of the transcription factors MarA, SoxS and Rob of serovar Typhimurium in regulating expression in response to menadione. We determined the transcript and protein levels of OmpW in different genetic backgrounds; in the wild-type and Δ strains was upregulated in response to menadione, while in the Δ and Δ strains the induction was abolished. In a double mutant, transcript levels were lowered after exposure to menadione, and only complementation with both genes restored the positive regulation. Using transcriptional fusions and electrophoretic mobility shift assays with mutant versions of the promoter region we demonstrated that two of the predicted sites were functional. Additionally, we demonstrated that MarA increases the affinity of SoxS for the promoter region. In conclusion, our study shows that is upregulated in response to menadione in a cooperative manner by MarA and SoxS through a direct interaction with the promoter region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066050-0
2013-04-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/715.html?itemId=/content/journal/micro/10.1099/mic.0.066050-0&mimeType=html&fmt=ahah

References

  1. Aono R., Tsukagoshi N., Yamamoto M.( 1998). Involvement of outer membrane protein TolC, a possible member of the mar–sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944[PubMed]
    [Google Scholar]
  2. Benz R., Bauer K.( 1988). Permeation of hydrophilic molecules through the outer membrane of Gram-negative bacteria. Review on bacterial porins. Eur J Biochem 176:1–19 [View Article][PubMed]
    [Google Scholar]
  3. Bouchal P., Struhárová I., Budinská E., Sedo O., Vyhlídalová T., Zdráhal Z., van Spanning R., Kucera I.( 2010). Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochim Biophys Acta 1804:1350–1358 [View Article][PubMed]
    [Google Scholar]
  4. Chatfield S. N., Dorman C. J., Hayward C., Dougan G.( 1991). Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both OmpC and OmpF are attenuated in vivo. Infect Immun 59:449–452[PubMed]
    [Google Scholar]
  5. Chollet R., Bollet C., Chevalier J., Malléa M., Pagès J.-M., Davin-Regli A.( 2002). mar Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob Agents Chemother 46:1093–1097 [View Article][PubMed]
    [Google Scholar]
  6. Chollet R., Chevalier J., Bollet C., Pages J.-M., Davin-Regli A.( 2004). RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48:2518–2523 [View Article][PubMed]
    [Google Scholar]
  7. Collao B., Morales E. H., Gil F., Polanco R., Calderón I. L., Saavedra C. P.( 2012). Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol 194:933–942 [View Article][PubMed]
    [Google Scholar]
  8. De la Cruz M. A., Fernández-Mora M., Guadarrama C., Flores-Valdez M. A., Bustamante V. H., Vázquez A., Calva E.( 2007). LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66:727–743 [View Article][PubMed]
    [Google Scholar]
  9. Ebel-Tsipis J., Fox M. S., Botstein D.( 1972). Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol 71:449–469 [View Article][PubMed]
    [Google Scholar]
  10. Fujikawa M., Kobayashi K., Kozawa T.( 2012). Direct oxidation of the [2Fe–2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J Biol Chem 287:35702–35708 [View Article][PubMed]
    [Google Scholar]
  11. Gil F., Ipinza F., Fuentes J., Fumeron R., Villarreal J. M., Aspée A., Mora G. C., Vásquez C. C., Saavedra C.( 2007). The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar typhimurium. Res Microbiol 158:529–536 [View Article][PubMed]
    [Google Scholar]
  12. Gil F., Hernández-Lucas I., Polanco R., Pacheco N., Collao B., Villarreal J. M., Nardocci G., Calva E., Saavedra C. P.( 2009). SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology 155:2490–2497 [View Article][PubMed]
    [Google Scholar]
  13. Giró M., Carrillo N., Krapp A. R.( 2006). Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 152:1119–1128 [View Article][PubMed]
    [Google Scholar]
  14. Greenberg J. T., Monach P. A., Chou J. H., Josephy P. D., Demple B.( 1990). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87:6181–6185 [View Article][PubMed]
    [Google Scholar]
  15. Groisman E. A., Ochman H.( 1994). How to become a pathogen. Trends Microbiol 2:289–294 [View Article][PubMed]
    [Google Scholar]
  16. Gu M., Imlay J. A.( 2011). The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79:1136–1150 [View Article][PubMed]
    [Google Scholar]
  17. Hassan H. M., Fridovich I.( 1979). Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem 254:10846–10852[PubMed]
    [Google Scholar]
  18. Hong H., Patel D. R., Tamm L. K., van den Berg B.( 2006). The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem 281:7568–7577 [View Article][PubMed]
    [Google Scholar]
  19. Hu W. S., Li P. C., Cheng C. Y.( 2005). Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system. Antimicrob Agents Chemother 49:3955–3958 [View Article][PubMed]
    [Google Scholar]
  20. Imlay J. A.( 2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776 [View Article][PubMed]
    [Google Scholar]
  21. Jair K. W., Martin R. G., Rosner J. L., Fujita N., Ishihama A., Wolf R. E. Jr( 1995). Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 177:7100–7104[PubMed]
    [Google Scholar]
  22. Jair K. W., Yu X., Skarstad K., Thöny B., Fujita N., Ishihama A., Wolf R. E. Jr( 1996). Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 178:2507–2513[PubMed]
    [Google Scholar]
  23. Jalajakumari M. B., Manning P. A.( 1990). Nucleotide sequence of the gene, ompW, encoding a 22kDa immunogenic outer membrane protein of Vibrio cholerae. Nucleic Acids Res 18:2180 [View Article][PubMed]
    [Google Scholar]
  24. Jeanteur D., Lakey J. H., Pattus F.( 1991). The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol 5:2153–2164 [View Article][PubMed]
    [Google Scholar]
  25. Johnston J. W., Shamsulddin H., Miller A.-F., Apicella M. A.( 2010). Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenza. BMC Microbiol 10:240 [View Article]
    [Google Scholar]
  26. Kato T., Watanabe M., Ohta T.( 1994). Induction of the SOS response and mutations by reactive oxygen-generating compounds in various Escherichia coli mutants defective in the mutM, mutY or soxRS loci. Mutagenesis 9:245–251 [View Article][PubMed]
    [Google Scholar]
  27. Kim B. S., Hwang J., Kim M. H., Choi S. H.( 2011). Cooperative regulation of the Vibrio vulnificus nan gene cluster by NanR protein, cAMP receptor protein, and N-acetylmannosamine 6-phosphate. J Biol Chem 286:40889–40899 [View Article][PubMed]
    [Google Scholar]
  28. Koebnik R., Locher K. P., Van Gelder P.( 2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253 [View Article][PubMed]
    [Google Scholar]
  29. Krapp A. R., Humbert M. V., Carrillo N.( 2011). The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology 157:957–965 [View Article][PubMed]
    [Google Scholar]
  30. Kwon H. J., Bennik M. H., Demple B., Ellenberger T.( 2000). Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430 [View Article][PubMed]
    [Google Scholar]
  31. Lee P. E., Demple B., Barton J. K.( 2009). DNA-mediated redox signaling for transcriptional activation of SoxR. Proc Natl Acad Sci U S A 106:13164–13168 [View Article][PubMed]
    [Google Scholar]
  32. Li Z., Demple B.( 1994). SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem 269:18371–18377[PubMed]
    [Google Scholar]
  33. Li Z., Demple B.( 1996). Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol Microbiol 20:937–945 [View Article][PubMed]
    [Google Scholar]
  34. Martin R. G., Rosner J. L.( 2002). Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 44:1611–1624 [View Article][PubMed]
    [Google Scholar]
  35. Martin R. G., Gillette W. K., Rhee S., Rosner J. L.( 1999). Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441 [View Article][PubMed]
    [Google Scholar]
  36. Martin R. G., Gillette W. K., Rosner J. L.( 2000). Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 35:623–634 [View Article][PubMed]
    [Google Scholar]
  37. Martin R. G., Bartlett E. S., Rosner J. L., Wall M. E.( 2008). Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration. J Mol Biol 380:278–284 [View Article][PubMed]
    [Google Scholar]
  38. McMurry L. M., Levy S. B.( 2010). Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance. J Bacteriol 192:3977–3982 [View Article][PubMed]
    [Google Scholar]
  39. Michán C., Manchado M., Pueyo C.( 2002). SoxRS down-regulation of rob transcription. J Bacteriol 184:4733–4738 [View Article][PubMed]
    [Google Scholar]
  40. Morales E. H., Calderón I. L., Collao B., Gil F., Porwollik S., McClelland M., Saavedra C. P.( 2012). Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol 12:63 [View Article][PubMed]
    [Google Scholar]
  41. Morimyo M.( 1988). Isolation and characterization of methyl viologen-sensitive mutants of Escherichia coli K-12. J Bacteriol 170:2136–2142[PubMed]
    [Google Scholar]
  42. Nandi B., Nandy R. K., Sarkar A., Ghose A. C.( 2005). Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151:2975–2986 [View Article][PubMed]
    [Google Scholar]
  43. Nikaido H.( 1996). Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178:5853–5859[PubMed]
    [Google Scholar]
  44. Pfaffl M. W.( 2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article]
    [Google Scholar]
  45. Pomposiello P. J., Bennik M. H., Demple B.( 2001). Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902 [View Article][PubMed]
    [Google Scholar]
  46. Rodríguez-Morales O., Fernández-Mora M., Hernández-Lucas I., Vázquez A., Puente J. L., Calva E.( 2006). Salmonella enterica serovar Typhimurium ompS1 and ompS2 mutants are attenuated for virulence in mice. Infect Immun 74:1398–1402 [View Article][PubMed]
    [Google Scholar]
  47. Scandalios J. G.( 2002). Oxidative stress responses–what have genome-scale studies taught us?. Genome Biol 3:REVIEWS1019 [View Article][PubMed]
    [Google Scholar]
  48. Selke M., Meens J., Springer S., Frank R., Gerlach G. F.( 2007). Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun 75:2476–2483 [View Article][PubMed]
    [Google Scholar]
  49. Semchyshyn H., Bagnyukova T., Storey K., Lushchak V.( 2005). Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902 [View Article][PubMed]
    [Google Scholar]
  50. Son B., Liu Y., Kroos L.( 2011). Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development. J Bacteriol 193:2756–2766 [View Article][PubMed]
    [Google Scholar]
  51. Storz G., Imlay J. A.( 1999). Oxidative stress. Curr Opin Microbiol 2:188–194 [View Article][PubMed]
    [Google Scholar]
  52. Tobes R., Ramos J. L.( 2002). AraC–XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30:318–321 [View Article][PubMed]
    [Google Scholar]
  53. Vasil’eva S. V., Stupakova M. V., Lobysheva I. I., Mikoyan V. D., Vanin A. F.( 2001). Activation of the Escherichia coli SoxRS-regulon by nitric oxide and its physiological donors. Biochemistry (Mosc) 66:984–988 [View Article][PubMed]
    [Google Scholar]
  54. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E.( 1991). Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630 [View Article][PubMed]
    [Google Scholar]
  55. Wickstrum J. R., Santangelo T. J., Egan S. M.( 2005). Cyclic AMP receptor protein and RhaR synergistically activate transcription from the l-rhamnose-responsive rhaSR promoter in Escherichia coli. J Bacteriol 187:6708–6718 [View Article][PubMed]
    [Google Scholar]
  56. Xu C., Wang S., Ren H., Lin X., Wu L., Peng X.( 2005). Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics 5:3142–3152 [View Article][PubMed]
    [Google Scholar]
  57. Zgurskaya H. I., Nikaido H.( 2000). Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225 [View Article][PubMed]
    [Google Scholar]
  58. Zhang A., Rosner J. L., Martin R. G.( 2008). Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 69:1450–1455 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066050-0
Loading
/content/journal/micro/10.1099/mic.0.066050-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error