1887

Abstract

DK1622 possesses two copies of the gene: , which participates in development, and , which is involved in the predatory ability of cells. In this study, we determined that the gene is required for the biosynthesis of the secondary metabolite myxovirescin (TA), which plays essential roles in predation. The -knockout mutant strain was defective in producing a zone of inhibition and displayed decreased killing ability against , while the -knockout mutant strain exhibited little difference from the wild-type strain DK1622. HPLC revealed that deletion of the gene blocked the production of TA, which was present in the -knockout mutant. The addition of exogenous TA rescued the inhibition and killing abilities of the -knockout mutant against . Analysis of GroEL domain-swapping mutants indicated that the C-terminal equatorial domain of GroEL2 was essential for TA production, while the N-terminal equatorial or apical domains of GroEL2 were not sufficient to rescue TA production of the knockout.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065862-0
2014-03-01
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/488.html?itemId=/content/journal/micro/10.1099/mic.0.065862-0&mimeType=html&fmt=ahah

References

  1. Anscombe F. J., Singh B. N..( 1948;). Limitation of bacteria by micro-predators in soil. Nature161:140–141 [CrossRef][PubMed]
    [Google Scholar]
  2. Azem A., Kessel M., Goloubinoff P..( 1994;). Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science265:653–656 [CrossRef][PubMed]
    [Google Scholar]
  3. Berleman J. E., Kirby J. R..( 2009;). Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev33:942–957 [CrossRef][PubMed]
    [Google Scholar]
  4. Bittner A. N., Foltz A., Oke V..( 2007;). Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol189:1884–1889 [CrossRef][PubMed]
    [Google Scholar]
  5. Brocchieri L., Karlin S..( 2000;). Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci9:476–486 [CrossRef][PubMed]
    [Google Scholar]
  6. Dworkin M., Kaiser D..( 1993;). Myxobacteria II Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Fayet O., Ziegelhoffer T., Georgopoulos C..( 1989;). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol171:1379–1385[PubMed]
    [Google Scholar]
  8. Gaspari F., Paitan Y., Mainini M., Losi D., Ron E. Z., Marinelli F..( 2005;). Myxobacteria isolated in Israel as potential source of new anti-infectives. J Appl Microbiol98:429–439 [CrossRef][PubMed]
    [Google Scholar]
  9. George R., Kelly S. M., Price N. C., Erbse A., Fisher M., Lund P. A..( 2004;). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun324:822–828 [CrossRef][PubMed]
    [Google Scholar]
  10. Gerth K., Irschik H., Reichenbach H., Trowitzsch W..( 1982;). The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J Antibiot (Tokyo)35:1454–1459 [CrossRef][PubMed]
    [Google Scholar]
  11. Gerth K., Pradella S., Perlova O., Beyer S., Müller R..( 2003;). Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol106:233–253 [CrossRef][PubMed]
    [Google Scholar]
  12. Goldman B. S., Nierman W. C., Kaiser D., Slater S. C., Durkin A. S., Eisen J. A., Ronning C. M., Barbazuk W. B., Blanchard M..& other authors ( 2006;). Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A103:15200–15205 [CrossRef][PubMed]
    [Google Scholar]
  13. Gould P. S., Burgar H. R., Lund P. A..( 2007;). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones12:123–131 [CrossRef][PubMed]
    [Google Scholar]
  14. Goyal K., Qamra R., Mande S. C..( 2006;). Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol63:781–787 [CrossRef][PubMed]
    [Google Scholar]
  15. Hodgkin J., Kaiser D..( 1977;). Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A74:2938–2942 [CrossRef][PubMed]
    [Google Scholar]
  16. Hu Y., Henderson B., Lund P. A., Tormay P., Ahmed M. T., Gurcha S. S., Besra G. S., Coates A. R..( 2008;). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun76:1535–1546 [CrossRef][PubMed]
    [Google Scholar]
  17. Kashefi K., Hartzell P. L..( 1995;). Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol Microbiol15:483–494 [CrossRef][PubMed]
    [Google Scholar]
  18. Li J., Wang Y., Zhang C. Y., Zhang W. Y., Jiang D. M., Wu Z. H., Liu H., Li Y. Z..( 2010;). Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development. J Bacteriol192:1875–1881 [CrossRef][PubMed]
    [Google Scholar]
  19. Lin Z., Rye H. S..( 2006;). GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol41:211–239 [CrossRef][PubMed]
    [Google Scholar]
  20. Lund P. A..( 2001;). Microbial molecular chaperones. Adv Microb Physiol44:93–140 [CrossRef][PubMed]
    [Google Scholar]
  21. Lund P. A..( 2009;). Multiple chaperonins in bacteria–why so many. FEMS Microbiol Rev33:785–800 [CrossRef][PubMed]
    [Google Scholar]
  22. McBride M. J., Zusman D. R..( 1996;). Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett137:227–231 [CrossRef][PubMed]
    [Google Scholar]
  23. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F..( 2005;). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell123:861–873 [CrossRef][PubMed]
    [Google Scholar]
  24. Radford S. E..( 2006;). GroEL: more than just a folding cage. Cell125:831–833 [CrossRef][PubMed]
    [Google Scholar]
  25. Ranson N. A., White H. E., Saibil H. R..( 1998;). Chaperonins. Biochem J333:233–242[PubMed]
    [Google Scholar]
  26. Rodríguez-Quiñones F., Maguire M., Wallington E. J., Gould P. S., Yerko V., Downie J. A., Lund P. A..( 2005;). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol183:253–265 [CrossRef][PubMed]
    [Google Scholar]
  27. Rosenberg E..(editor) ( 1984;). Myxobacteria: Development and Cell Interactions New York: Springer; [CrossRef]
    [Google Scholar]
  28. Shimkets L. J..( 1990;). Social and developmental biology of the myxobacteria. Microbiol Rev54:473–501[PubMed]
    [Google Scholar]
  29. Simunovic V., Zapp J., Rachid S., Krug D., Meiser P., Müller R..( 2006;). Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem7:1206–1220 [CrossRef][PubMed]
    [Google Scholar]
  30. Ueki T., Inouye S., Inouye M..( 1996;). Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene183:153–157 [CrossRef][PubMed]
    [Google Scholar]
  31. VanBogelen R. A., Acton M. A., Neidhardt F. C..( 1987;). Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev1:525–531 [CrossRef][PubMed]
    [Google Scholar]
  32. Varon M., Cohen S., Rosenberg E..( 1984;). Autocides produced by Myxococcus xanthus. J Bacteriol160:1146–1150[PubMed]
    [Google Scholar]
  33. Wang Y., Zhang W. Y., Zhang Z., Li J., Li Z. F., Tan Z. G., Zhang T. T., Wu Z. H., Liu H., Li Y. Z..( 2013;). Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet9:e1003306 [CrossRef][PubMed]
    [Google Scholar]
  34. Weissman K. J., Müller R..( 2009;). A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem17:2121–2136 [CrossRef][PubMed]
    [Google Scholar]
  35. Weissman K. J., Müller R..( 2010;). Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep27:1276–1295 [CrossRef][PubMed]
    [Google Scholar]
  36. Wenzel S. C., Müller R..( 2009;). Myxobacteria–‘microbial factories’ for the production of bioactive secondary metabolites. Mol Biosyst5:567–574 [CrossRef][PubMed]
    [Google Scholar]
  37. Whitworth D. E..( 2007;). Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Wu S. S., Kaiser D..( 1996;). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol178:5817–5821[PubMed]
    [Google Scholar]
  39. Xiao Y., Wei X., Ebright R., Wall D..( 2011;). Antibiotic production by myxobacteria plays a role in predation. J Bacteriol193:4626–4633 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang W., Li Y., Qian G., Wang Y., Chen H., Li Y. Z., Liu F., Shen Y., Du L..( 2011;). Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob Agents Chemother55:5581–5589 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065862-0
Loading
/content/journal/micro/10.1099/mic.0.065862-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error