1887

Abstract

include extremely thermoacidophilic organisms that thrive in geothermal environments dominated by sulfidic ores and heavy metals such as mercury. Mercuric ion, Hg(II), inactivates transcription in the crenarchaeote and simultaneously derepresses transcription of a resistance operon, , through interaction with the MerR transcription factor. While mercuric reductase (MerA) is required for metal resistance, the role of MerH, an adjacent small and predicted product of an ORF, has not been explored. Inactivation of MerH either by nonsense mutation or by in-frame deletion diminished Hg(II) resistance of mutant cells. Promoter mapping studies indicated that Hg(II) sensitivity of the nonsense mutant arose through transcriptional polarity, and its metal resistance was restored partially by single copy complementation. Since MerH was not required for MerA-catalysed Hg(II) reduction, MerH may play an alternative role in metal resistance. Inductively coupled plasma-mass spectrometry analysis of the MerH deletion strain following metal challenge indicated that there was prolonged retention of intracellular Hg(II). Finally, a reduced rate of operon induction in the deletion mutant suggested that the requirement for MerH could result from metal trafficking to the MerR transcription factor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065854-0
2013-06-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1198.html?itemId=/content/journal/micro/10.1099/mic.0.065854-0&mimeType=html&fmt=ahah

References

  1. Allen M. B.( 1959). Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32:270–277 [View Article][PubMed]
    [Google Scholar]
  2. Barkay T., Miller S. M., Summers A. O.( 2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384 [View Article][PubMed]
    [Google Scholar]
  3. Bell S. D., Kosa P. L., Sigler P. B., Jackson S. P.( 1999). Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci U S A 96:13662–13667 [View Article][PubMed]
    [Google Scholar]
  4. Bini E., Dikshit V., Dirksen K., Drozda M., Blum P.( 2002). Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA 8:1129–1136 [View Article][PubMed]
    [Google Scholar]
  5. Bradford W. D., Cahoon L., Freel S. R., Hoopes L. L., Eckdahl T. T.( 2005). An inexpensive gel electrophoresis-based polymerase chain reaction method for quantifying mRNA levels. Cell Biol Educ 4:157–168 [View Article][PubMed]
    [Google Scholar]
  6. Brock T. D., Brock K. M., Belly R. T., Weiss R. L.( 1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68 [View Article][PubMed]
    [Google Scholar]
  7. Carter E. L., Flugga N., Boer J. L., Mulrooney S. B., Hausinger R. P.( 2009). Interplay of metal ions and urease. Metallomics 1:207–221 [View Article][PubMed]
    [Google Scholar]
  8. Dixit V., Bini E., Drozda M., Blum P.( 2004). Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus. Antimicrob Agents Chemother 48:1993–1999 [View Article][PubMed]
    [Google Scholar]
  9. Ermolaeva M. D., Khalak H. G., White O., Smith H. O., Salzberg S. L.( 2000). Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33 [View Article][PubMed]
    [Google Scholar]
  10. Ettema T. J., Huynen M. A., de Vos W. M., van der Oost J.( 2003). TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28:170–173 [View Article][PubMed]
    [Google Scholar]
  11. Ettema T. J., Brinkman A. B., Lamers P. P., Kornet N. G., de Vos W. M., van der Oost J.( 2006). Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology 152:1969–1979 [View Article][PubMed]
    [Google Scholar]
  12. Fox B., Walsh C. T.( 1982). Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 257:2498–2503[PubMed]
    [Google Scholar]
  13. Gambill B. D., Summers A. O.( 1992). Synthesis and degradation of the mRNA of the Tn21 mer operon. J Mol Biol 225:251–259 [View Article][PubMed]
    [Google Scholar]
  14. Greve B., Jensen S., Brügger K., Zillig W., Garrett R. A.( 2004). Genomic comparison of archaeal conjugative plasmids from Sulfolobus. Archaea 1:231–239 [View Article][PubMed]
    [Google Scholar]
  15. Grossoehme N. E., Mulrooney S. B., Hausinger R. P., Wilcox D. E.( 2007). Thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the urease metallochaperone UreE. Biochemistry 46:10506–10516 [View Article][PubMed]
    [Google Scholar]
  16. Hajduch M., Ganapathy A., Stein J. W., Thelen J. J.( 2005). A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419 [View Article][PubMed]
    [Google Scholar]
  17. Haseltine C., Montalvo-Rodriguez R., Bini E., Carl A., Blum P.( 1999a). Coordinate transcriptional control in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 181:3920–3927[PubMed]
    [Google Scholar]
  18. Haseltine C., Montalvo-Rodriguez R., Carl A., Bini E., Blum P.( 1999b). Extragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus. Genetics 152:1353–1361[PubMed]
    [Google Scholar]
  19. Herbst R. W., Perovic I., Martin-Diaconescu V., O’Brien K., Chivers P. T., Pochapsky S. S., Pochapsky T. C., Maroney M. J.( 2010). Communication between the zinc and nickel sites in dimeric HypA: metal recognition and pH sensing. J Am Chem Soc 132:10338–10351 [View Article][PubMed]
    [Google Scholar]
  20. Higuchi R., Krummel B., Saiki R. K.( 1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367 [View Article][PubMed]
    [Google Scholar]
  21. Hong B., Nauss R., Harwood I. M., Miller S. M.( 2010). Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione. Biochemistry 49:8187–8196 [View Article][PubMed]
    [Google Scholar]
  22. Ledwidge R., Patel B., Dong A., Fiedler D., Falkowski M., Zelikova J., Summers A. O., Pai E. F., Miller S. M.( 2005). NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry 44:11402–11416 [View Article][PubMed]
    [Google Scholar]
  23. Lesur I., Campbell J. L.( 2004). The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell 15:1297–1312 [View Article][PubMed]
    [Google Scholar]
  24. Maezato Y., Dana K., Blum P.( 2011). Engineering thermoacidophilic archaea using linear DNA recombination. Methods Mol Biol 765:435–445 [View Article][PubMed]
    [Google Scholar]
  25. Marone M., Mozzetti S., De Ritis D., Pierelli L., Scambia G.( 2001). Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3:19–25 [View Article][PubMed]
    [Google Scholar]
  26. Morby A. P., Hobman J. L., Brown N. L.( 1995). The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol Microbiol 17:25–35 [View Article][PubMed]
    [Google Scholar]
  27. Nakayama H., Yokoi H., Fujita J.( 1992). Quantification of mRNA by non-radioactive RT-PCR and CCD imaging system. Nucleic Acids Res 20:4939 [View Article][PubMed]
    [Google Scholar]
  28. Noonan K. E., Beck C., Holzmayer T. A., Chin J. E., Wunder J. S., Andrulis I. L., Gazdar A. F., Willman C. L., Griffith B., Von Hoff D. D.( 1990). Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci U S A 87:7160–7164 [View Article][PubMed]
    [Google Scholar]
  29. Okamoto S., Van Petegem F., Patrauchan M. A., Eltis L. D.( 2010). AnhE, a metallochaperone involved in the maturation of a cobalt-dependent nitrile hydratase. J Biol Chem 285:25126–25133 [View Article][PubMed]
    [Google Scholar]
  30. Orell A., Navarro C. A., Arancibia R., Mobarec J. C., Jerez C. A.( 2010). Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848 [View Article][PubMed]
    [Google Scholar]
  31. Reeve J. N.( 2003). Archaeal chromatin and transcription. Mol Microbiol 48:587–598 [View Article][PubMed]
    [Google Scholar]
  32. Reiter W. D., Hüdepohl U., Zillig W.( 1990). Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A 87:9509–9513 [View Article][PubMed]
    [Google Scholar]
  33. Robinson N. J., Winge D. R.( 2010). Copper metallochaperones. Annu Rev Biochem 79:537–562 [View Article][PubMed]
    [Google Scholar]
  34. Rockabrand D., Livers K., Austin T., Kaiser R., Jensen D., Burgess R., Blum P.( 1998). Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli. J Bacteriol 180:846–854[PubMed]
    [Google Scholar]
  35. Rolfsmeier M., Blum P.( 1995). Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J Bacteriol 177:482–485[PubMed]
    [Google Scholar]
  36. Rolfsmeier M., Haseltine C., Bini E., Clark A., Blum P.( 1998). Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 180:1287–1295[PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D. W.( 2001). Molecular Cloning: A Laboratory Manual, 3rd edn. vol. 2 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  38. Santangelo T. J., Reeve J. N.( 2006). Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 355:196–210 [View Article][PubMed]
    [Google Scholar]
  39. Schelert J., Dixit V., Hoang V., Simbahan J., Drozda M., Blum P.( 2004). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437 [View Article][PubMed]
    [Google Scholar]
  40. Schelert J., Drozda M., Dixit V., Dillman A., Blum P.( 2006). Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150 [View Article][PubMed]
    [Google Scholar]
  41. Schué M., Dover L. G., Besra G. S., Parkhill J., Brown N. L.( 2009). Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 191:439–444 [View Article][PubMed]
    [Google Scholar]
  42. Serre L., Rossy E., Pebay-Peyroula E., Cohen-Addad C., Covès J.( 2004). Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. J Mol Biol 339:161–171 [View Article][PubMed]
    [Google Scholar]
  43. Simbahan J., Kurth E., Schelert J., Dillman A., Moriyama E., Jovanovich S., Blum P.( 2005). Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71:8836–8845 [View Article][PubMed]
    [Google Scholar]
  44. Sowers K. R., Blum P. H., DasSarma S.( 2007). Gene transfer in archaea. Methods for General and Molecular Microbiology, 3rd edn.800–824 Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M. Washington, D.C.: American Society for Microbiology Press;
    [Google Scholar]
  45. Unniraman S., Prakash R., Nagaraja V.( 2002). Conserved economics of transcription termination in eubacteria. Nucleic Acids Res 30:675–684 [View Article][PubMed]
    [Google Scholar]
  46. Villafane A., Voskoboynik Y., Ruhl I., Sannino D., Maezato Y., Blum P., Bini E.( 2011). CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiology 157:2808–2817 [View Article][PubMed]
    [Google Scholar]
  47. Wang Y., Boyd E., Crane S., Lu-Irving P., Krabbenhoft D., King S., Dighton J., Geesey G., Barkay T.( 2011). Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A. Microb Ecol 62:739–752 [View Article][PubMed]
    [Google Scholar]
  48. Worthington P., Hoang V., Perez-Pomares F., Blum P.( 2003a). Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488 [View Article][PubMed]
    [Google Scholar]
  49. Worthington P., Blum P., Perez-Pomares F., Elthon T.( 2003b). Large-scale cultivation of acidophilic hyperthermophiles for recovery of secreted proteins. Appl Environ Microbiol 69:252–257 [View Article][PubMed]
    [Google Scholar]
  50. Wright K. J., Marr M. T. II, Tjian R.( 2006). TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Proc Natl Acad Sci U S A 103:12347–12352 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.065854-0
Loading
/content/journal/micro/10.1099/mic.0.065854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error