1887

Abstract

serovar Typhimurium requires the type III secretion system encoded by pathogenicity island 1 (SPI1) and controlled by the master regulator, HilA, to penetrate the intestinal epithelium. Numerous regulators affect virulence through influence on this system, including the proteolytic component ClpP, the stationary phase regulator RpoS and the carbon-storage regulator CsrA. However, the mechanism behind the ClpP regulation is not fully understood. To elucidate this we examined differentially expressed genes in a Δ mutant compared with WT using global transcriptomic analysis. SPI1 and SPI4 virulence genes were significantly downregulated in the Δ mutant, whereas several RpoS-dependent genes and the gene encoding flagellin were upregulated. While the Δ mutant was attenuated in cell invasion, this attenuation was not present in a Δ : :  double mutant, suggesting the repression of invasion was directed through RpoS. The expression of the virulence regulator was increased in the Δ mutant and decreased in the  : :  and Δ : :  mutants, indicating that ClpP affects the expression level as well. Thus, this study suggests that ClpP affects SPI1 expression and thereby virulence indirectly through its regulation of both RpoS and CsrA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065797-0
2013-07-01
2021-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1497.html?itemId=/content/journal/micro/10.1099/mic.0.065797-0&mimeType=html&fmt=ahah

References

  1. Aabo S., Christensen J. P., Chadfield M. S., Carstensen B., Olsen J. E., Bisgaard M.. ( 2002;). Quantitative comparison of intestinal invasion of zoonotic serotypes of Salmonella enterica in poultry. Avian Pathol31:41–47 [CrossRef][PubMed]
    [Google Scholar]
  2. Ahmer B. M., van Reeuwijk J., Watson P. R., Wallis T. S., Heffron F.. ( 1999;). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol31:971–982 [CrossRef][PubMed]
    [Google Scholar]
  3. Altier C.. ( 2005;). Genetic and environmental control of Salmonella invasion. J Microbiol43:85–92[PubMed]
    [Google Scholar]
  4. Altier C., Suyemoto M., Lawhon S. D.. ( 2000a;). Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. . Infect Immun68:6790–6797 [CrossRef][PubMed]
    [Google Scholar]
  5. Altier C., Suyemoto M., Ruiz A. I., Burnham K. D., Maurer R.. ( 2000b;). Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol35:635–646 [CrossRef][PubMed]
    [Google Scholar]
  6. Babitzke P., Romeo T.. ( 2007;). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol10:156–163 [CrossRef][PubMed]
    [Google Scholar]
  7. Bajaj V., Lucas R. L., Hwang C., Lee C. A.. ( 1996;). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol22:703–714 [CrossRef][PubMed]
    [Google Scholar]
  8. Baker C. S., Eöry L. A., Yakhnin H., Mercante J., Romeo T., Babitzke P.. ( 2007;). CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine–Dalgarno sequence. J Bacteriol189:5472–5481 [CrossRef][PubMed]
    [Google Scholar]
  9. Bearson S. M., Benjamin W. H. Jr, Swords W. E., Foster J. W.. ( 1996;). Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. . J Bacteriol178:2572–2579[PubMed]
    [Google Scholar]
  10. Boddicker J. D., Jones B. D.. ( 2004;). Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun72:2002–2013 [CrossRef][PubMed]
    [Google Scholar]
  11. Breitling R., Armengaud P., Amtmann A., Herzyk P.. ( 2004;). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett573:83–92 [CrossRef][PubMed]
    [Google Scholar]
  12. Brown L., Elliott T.. ( 1996;). Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol178:3763–3770[PubMed]
    [Google Scholar]
  13. Chadfield M. S., Brown D. J., Aabo S., Christensen J. P., Olsen J. E.. ( 2003;). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol92:49–64 [CrossRef][PubMed]
    [Google Scholar]
  14. Chilcott G. S., Hughes K. T.. ( 2000;). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. . Microbiol Mol Biol Rev64:694–708 [CrossRef][PubMed]
    [Google Scholar]
  15. Coynault C., Robbe-Saule V., Norel F.. ( 1996;). Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (σS) regulon. Mol Microbiol22:149–160 [CrossRef][PubMed]
    [Google Scholar]
  16. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  17. Dong T., Schellhorn H. E.. ( 2009;). Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics281:19–33 [CrossRef][PubMed]
    [Google Scholar]
  18. Dong T., Schellhorn H. E.. ( 2010;). Role of RpoS in virulence of pathogens. Infect Immun78:887–897 [CrossRef][PubMed]
    [Google Scholar]
  19. Dong T., Kirchhof M. G., Schellhorn H. E.. ( 2008;). RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics279:267–277 [CrossRef][PubMed]
    [Google Scholar]
  20. Ellermeier C. D., Ellermeier J. R., Slauch J. M.. ( 2005;). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol57:691–705 [CrossRef][PubMed]
    [Google Scholar]
  21. Forsbach-Birk V., McNealy T., Shi C., Lynch D., Marre R.. ( 2004;). Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. . Int J Med Microbiol294:15–25 [CrossRef][PubMed]
    [Google Scholar]
  22. Fortune D. R., Suyemoto M., Altier C.. ( 2006;). Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun74:331–339 [CrossRef][PubMed]
    [Google Scholar]
  23. Frees D., Sørensen K., Ingmer H.. ( 2005;). Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Infect Immun73:8100–8108 [CrossRef][PubMed]
    [Google Scholar]
  24. Gerlach R. G., Cláudio N., Rohde M., Jäckel D., Wagner C., Hensel M.. ( 2008;). Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol10:2364–2376 [CrossRef][PubMed]
    [Google Scholar]
  25. Gottesman S.. ( 2003;). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol19:565–587 [CrossRef][PubMed]
    [Google Scholar]
  26. Gudapaty S., Suzuki K., Wang X., Babitzke P., Romeo T.. ( 2001;). Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. . J Bacteriol183:6017–6027 [CrossRef][PubMed]
    [Google Scholar]
  27. Gulig P. A., Doyle T. J.. ( 1993;). The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infect Immun61:504–511[PubMed]
    [Google Scholar]
  28. Gur E., Biran D., Ron E. Z.. ( 2011;). Regulated proteolysis in Gram-negative bacteria–how and when?. Nat Rev Microbiol9:839–848 [CrossRef][PubMed]
    [Google Scholar]
  29. Heeb S., Valverde C., Gigot-Bonnefoy C., Haas D.. ( 2005;). Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett243:251–258 [CrossRef][PubMed]
    [Google Scholar]
  30. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W.. ( 1995;). Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403 [CrossRef][PubMed]
    [Google Scholar]
  31. Hormaeche C. E.. ( 1979;). Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology37:311–318[PubMed]
    [Google Scholar]
  32. Iqbal M., Philbin V. J., Withanage G. S., Wigley P., Beal R. K., Goodchild M. J., Barrow P., McConnell I., Maskell D. J. et al. ( 2005;). Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. . Infect Immun73:2344–2350 [CrossRef][PubMed]
    [Google Scholar]
  33. Iyoda S., Watanabe H.. ( 2005;). ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. . J Bacteriol187:4086–4094 [CrossRef][PubMed]
    [Google Scholar]
  34. Iyoda S., Koizumi N., Satou H., Lu Y., Saitoh T., Ohnishi M., Watanabe H.. ( 2006;). The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. . J Bacteriol188:5682–5692 [CrossRef][PubMed]
    [Google Scholar]
  35. Jelsbak L., Thomsen L. E., Wallrodt I., Jensen P. R., Olsen J. E.. ( 2012;). Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS ONE7:e36149 [CrossRef][PubMed]
    [Google Scholar]
  36. Johnston C., Pegues D. A., Hueck C. J., Lee A., Miller S. I.. ( 1996;). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol22:715–727 [CrossRef][PubMed]
    [Google Scholar]
  37. Jones B. D.. ( 2005;). Salmonella invasion gene regulation: a story of environmental awareness. J Microbiol43:110–117[PubMed]
    [Google Scholar]
  38. Kage H., Takaya A., Ohya M., Yamamoto T.. ( 2008;). Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol190:2470–2478 [CrossRef][PubMed]
    [Google Scholar]
  39. Knudsen G. M., Nielsen M. B., Grassby T., Danino-Appleton V., Thomsen L. E., Colquhoun I. J., Brocklehurst T. F., Olsen J. E., Hinton J. C.. ( 2012;). A third mode of surface-associated growth: immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS-directed transcriptional programme. Environ. Microbiol.14:1855–75[PubMed][CrossRef]
    [Google Scholar]
  40. Kowarz L., Coynault C., Robbe-Saule V., Norel F.. ( 1994;). The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. J Bacteriol176:6852–6860[PubMed]
    [Google Scholar]
  41. Krogfelt K. A., Hjulgaard M., Sørensen K., Cohen P. S., Givskov M.. ( 2000;). rpoS gene function is a disadvantage for Escherichia coli BJ4 during competitive colonization of the mouse large intestine. Infect Immun68:2518–2524 [CrossRef][PubMed]
    [Google Scholar]
  42. Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C.. ( 2003;). Global regulation by CsrA in Salmonella typhimurium. . Mol Microbiol48:1633–1645 [CrossRef][PubMed]
    [Google Scholar]
  43. Li Y., Yamazaki A., Zou L., Biddle E., Zeng Q., Wang Y., Lin H., Wang Q., Yang C. H.. ( 2010;). ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence. Mol Plant Microbe Interact23:871–878 [CrossRef][PubMed]
    [Google Scholar]
  44. Lin D., Rao C. V., Slauch J. M.. ( 2008;). The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol190:87–97 [CrossRef][PubMed]
    [Google Scholar]
  45. Lostroh C. P., Lee C. A.. ( 2001;). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect3:1281–1291 [CrossRef][PubMed]
    [Google Scholar]
  46. Lucas R. L., Lee C. A.. ( 2001;). Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. J Bacteriol183:2733–2745 [CrossRef][PubMed]
    [Google Scholar]
  47. Maloy S. R., Stewart V. J., Taylor R. K.. ( 1996;). Genetic Analysis of Pathogenic Bacteria New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  48. Martínez L. C., Yakhnin H., Camacho M. I., Georgellis D., Babitzke P., Puente J. L., Bustamante V. H.. ( 2011;). Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol80:1637–1656 [CrossRef][PubMed]
    [Google Scholar]
  49. Matiasovicova J., Adams P., Barrow P. A., Hradecka H., Malcova M., Karpiskova R., Budinska E., Pilousova L., Rychlik I.. ( 2007;). Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch Microbiol187:415–424 [CrossRef][PubMed]
    [Google Scholar]
  50. Matsui H., Suzuki M., Isshiki Y., Kodama C., Eguchi M., Kikuchi Y., Motokawa K., Takaya A., Tomoyasu T., Yamamoto T.. ( 2003;). Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. . Infect Immun71:30–39 [CrossRef][PubMed]
    [Google Scholar]
  51. Methner U., Barrow P. A., Gregorova D., Rychlik I.. ( 2004;). Intestinal colonisation-inhibition and virulence of Salmonella phoP, rpoS and ompC deletion mutants in chickens. Vet Microbiol98:37–43 [CrossRef][PubMed]
    [Google Scholar]
  52. Mukherjee A., Cui Y., Ma W., Liu Y., Ishihama A., Eisenstark A., Chatterjee A. K.. ( 1998;). RpoS (sigma-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. . J Bacteriol180:3629–3634[PubMed]
    [Google Scholar]
  53. Ó’Cróinín T., Dorman C. J.. ( 2007;). Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol66:237–251 [CrossRef][PubMed]
    [Google Scholar]
  54. Olsen J. E., Hoegh-Andersen K. H., Casadesús J., Rosenkranzt J., Chadfield M. S., Thomsen L. E.. ( 2013;). The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol13:67 [CrossRef][PubMed]
    [Google Scholar]
  55. Patten C. L., Kirchhof M. G., Schertzberg M. R., Morton R. A., Schellhorn H. E.. ( 2004;). Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics272:580–591 [CrossRef][PubMed]
    [Google Scholar]
  56. Pizarro-Cerdá J., Cossart P.. ( 2006;). Bacterial adhesion and entry into host cells. Cell124:715–727 [CrossRef][PubMed]
    [Google Scholar]
  57. Raffatellu M., Wilson R. P., Chessa D., Andrews-Polymenis H., Tran Q. T., Lawhon S., Khare S., Adams L. G., Bäumler A. J.. ( 2005;). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun73:146–154 [CrossRef][PubMed]
    [Google Scholar]
  58. Romeo T.. ( 1998;). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol29:1321–1330 [CrossRef][PubMed]
    [Google Scholar]
  59. Schechter L. M., Damrauer S. M., Lee C. A.. ( 1999;). Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol Microbiol32:629–642 [CrossRef][PubMed]
    [Google Scholar]
  60. Schlumberger M. C., Hardt W. D.. ( 2006;). Salmonella type III secretion effectors: pulling the host cell’s strings. Curr Opin Microbiol9:46–54 [CrossRef][PubMed]
    [Google Scholar]
  61. Schweder T., Lee K. H., Lomovskaya O., Matin A.. ( 1996;). Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. J Bacteriol178:470–476[PubMed]
    [Google Scholar]
  62. Takaya A., Tomoyasu T., Tokumitsu A., Morioka M., Yamamoto T.. ( 2002;). The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol184:224–232 [CrossRef][PubMed]
    [Google Scholar]
  63. Takaya A., Kubota Y., Isogai E., Yamamoto T.. ( 2005;). Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol55:839–852 [CrossRef][PubMed]
    [Google Scholar]
  64. Thijs I. M. V., De Keersmaecker S. C. J., Fadda A., Engelen K., Zhao H., McClelland M., Marchal K., Vanderleyden J.. ( 2007;). Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol189:4587–4596 [CrossRef][PubMed]
    [Google Scholar]
  65. Thomsen L. E., Olsen J. E., Foster J. W., Ingmer H.. ( 2002;). ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology148:2727–2733[PubMed]
    [Google Scholar]
  66. Tomoyasu T., Ohkishi T., Ukyo Y., Tokumitsu A., Takaya A., Suzuki M., Sekiya K., Matsui H., Kutsukake K., Yamamoto T.. ( 2002;). The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol184:645–653 [CrossRef][PubMed]
    [Google Scholar]
  67. Tomoyasu T., Takaya A., Isogai E., Yamamoto T.. ( 2003;). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol48:443–452 [CrossRef][PubMed]
    [Google Scholar]
  68. Tomoyasu T., Takaya A., Handa Y., Karata K., Yamamoto T.. ( 2005;). ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli. . FEMS Microbiol Lett253:59–66 [CrossRef][PubMed]
    [Google Scholar]
  69. Vogel J.. ( 2009;). A rough guide to the non-coding RNA world of Salmonella. . Mol Microbiol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  70. Webb C., Moreno M., Wilmes-Riesenberg M., Curtiss R. III, Foster J. W.. ( 1999;). Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. . Mol Microbiol34:112–123 [CrossRef][PubMed]
    [Google Scholar]
  71. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R.. ( 2005;). Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol187:1591–1603 [CrossRef][PubMed]
    [Google Scholar]
  72. Wickner S., Maurizi M. R., Gottesman S.. ( 1999;). Posttranslational quality control: folding, refolding, and degrading proteins. Science286:1888–1893 [CrossRef][PubMed]
    [Google Scholar]
  73. Wilmes-Riesenberg M. R., Foster J. W., Curtiss R. III. ( 1997;). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun65:203–210[PubMed]
    [Google Scholar]
  74. Yakhnin H., Yakhnin A. V., Baker C. S., Sineva E., Berezin I., Romeo T., Babitzke P.. ( 2011;). Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol Microbiol81:689–704 [CrossRef][PubMed]
    [Google Scholar]
  75. Yamamoto T., Sashinami H., Takaya A., Tomoyasu T., Matsui H., Kikuchi Y., Hanawa T., Kamiya S., Nakane A.. ( 2001;). Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun69:3164–3174 [CrossRef][PubMed]
    [Google Scholar]
  76. Yoon H., McDermott J. E., Porwollik S., McClelland M., Heffron F.. ( 2009;). Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog5:e1000306 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065797-0
Loading
/content/journal/micro/10.1099/mic.0.065797-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error