1887

Abstract

serovar Typhimurium requires the type III secretion system encoded by pathogenicity island 1 (SPI1) and controlled by the master regulator, HilA, to penetrate the intestinal epithelium. Numerous regulators affect virulence through influence on this system, including the proteolytic component ClpP, the stationary phase regulator RpoS and the carbon-storage regulator CsrA. However, the mechanism behind the ClpP regulation is not fully understood. To elucidate this we examined differentially expressed genes in a Δ mutant compared with WT using global transcriptomic analysis. SPI1 and SPI4 virulence genes were significantly downregulated in the Δ mutant, whereas several RpoS-dependent genes and the gene encoding flagellin were upregulated. While the Δ mutant was attenuated in cell invasion, this attenuation was not present in a Δ : :  double mutant, suggesting the repression of invasion was directed through RpoS. The expression of the virulence regulator was increased in the Δ mutant and decreased in the  : :  and Δ : :  mutants, indicating that ClpP affects the expression level as well. Thus, this study suggests that ClpP affects SPI1 expression and thereby virulence indirectly through its regulation of both RpoS and CsrA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065797-0
2013-07-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1497.html?itemId=/content/journal/micro/10.1099/mic.0.065797-0&mimeType=html&fmt=ahah

References

  1. Aabo S. , Christensen J. P. , Chadfield M. S. , Carstensen B. , Olsen J. E. , Bisgaard M. . ( 2002; ). Quantitative comparison of intestinal invasion of zoonotic serotypes of Salmonella enterica in poultry. . Avian Pathol 31:, 41–47. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ahmer B. M. , van Reeuwijk J. , Watson P. R. , Wallis T. S. , Heffron F. . ( 1999; ). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. . Mol Microbiol 31:, 971–982. [CrossRef] [PubMed]
    [Google Scholar]
  3. Altier C. . ( 2005; ). Genetic and environmental control of Salmonella invasion. . J Microbiol 43:, 85–92.[PubMed]
    [Google Scholar]
  4. Altier C. , Suyemoto M. , Lawhon S. D. . ( 2000a; ). Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. . Infect Immun 68:, 6790–6797. [CrossRef] [PubMed]
    [Google Scholar]
  5. Altier C. , Suyemoto M. , Ruiz A. I. , Burnham K. D. , Maurer R. . ( 2000b; ). Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. . Mol Microbiol 35:, 635–646. [CrossRef] [PubMed]
    [Google Scholar]
  6. Babitzke P. , Romeo T. . ( 2007; ). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. . Curr Opin Microbiol 10:, 156–163. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bajaj V. , Lucas R. L. , Hwang C. , Lee C. A. . ( 1996; ). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. . Mol Microbiol 22:, 703–714. [CrossRef] [PubMed]
    [Google Scholar]
  8. Baker C. S. , Eöry L. A. , Yakhnin H. , Mercante J. , Romeo T. , Babitzke P. . ( 2007; ). CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine–Dalgarno sequence. . J Bacteriol 189:, 5472–5481. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bearson S. M. , Benjamin W. H. Jr , Swords W. E. , Foster J. W. . ( 1996; ). Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. . J Bacteriol 178:, 2572–2579.[PubMed]
    [Google Scholar]
  10. Boddicker J. D. , Jones B. D. . ( 2004; ). Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. . Infect Immun 72:, 2002–2013. [CrossRef] [PubMed]
    [Google Scholar]
  11. Breitling R. , Armengaud P. , Amtmann A. , Herzyk P. . ( 2004; ). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. . FEBS Lett 573:, 83–92. [CrossRef] [PubMed]
    [Google Scholar]
  12. Brown L. , Elliott T. . ( 1996; ). Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. . J Bacteriol 178:, 3763–3770.[PubMed]
    [Google Scholar]
  13. Chadfield M. S. , Brown D. J. , Aabo S. , Christensen J. P. , Olsen J. E. . ( 2003; ). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. . Vet Microbiol 92:, 49–64. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chilcott G. S. , Hughes K. T. . ( 2000; ). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. . Microbiol Mol Biol Rev 64:, 694–708. [CrossRef] [PubMed]
    [Google Scholar]
  15. Coynault C. , Robbe-Saule V. , Norel F. . ( 1996; ). Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (σS) regulon. . Mol Microbiol 22:, 149–160. [CrossRef] [PubMed]
    [Google Scholar]
  16. Datsenko K. A. , Wanner B. L. . ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dong T. , Schellhorn H. E. . ( 2009; ). Control of RpoS in global gene expression of Escherichia coli in minimal media. . Mol Genet Genomics 281:, 19–33. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dong T. , Schellhorn H. E. . ( 2010; ). Role of RpoS in virulence of pathogens. . Infect Immun 78:, 887–897. [CrossRef] [PubMed]
    [Google Scholar]
  19. Dong T. , Kirchhof M. G. , Schellhorn H. E. . ( 2008; ). RpoS regulation of gene expression during exponential growth of Escherichia coli K12. . Mol Genet Genomics 279:, 267–277. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ellermeier C. D. , Ellermeier J. R. , Slauch J. M. . ( 2005; ). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. . Mol Microbiol 57:, 691–705. [CrossRef] [PubMed]
    [Google Scholar]
  21. Forsbach-Birk V. , McNealy T. , Shi C. , Lynch D. , Marre R. . ( 2004; ). Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. . Int J Med Microbiol 294:, 15–25. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fortune D. R. , Suyemoto M. , Altier C. . ( 2006; ). Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. . Infect Immun 74:, 331–339. [CrossRef] [PubMed]
    [Google Scholar]
  23. Frees D. , Sørensen K. , Ingmer H. . ( 2005; ). Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. . Infect Immun 73:, 8100–8108. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gerlach R. G. , Cláudio N. , Rohde M. , Jäckel D. , Wagner C. , Hensel M. . ( 2008; ). Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. . Cell Microbiol 10:, 2364–2376. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gottesman S. . ( 2003; ). Proteolysis in bacterial regulatory circuits. . Annu Rev Cell Dev Biol 19:, 565–587. [CrossRef] [PubMed]
    [Google Scholar]
  26. Gudapaty S. , Suzuki K. , Wang X. , Babitzke P. , Romeo T. . ( 2001; ). Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. . J Bacteriol 183:, 6017–6027. [CrossRef] [PubMed]
    [Google Scholar]
  27. Gulig P. A. , Doyle T. J. . ( 1993; ). The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. . Infect Immun 61:, 504–511.[PubMed]
    [Google Scholar]
  28. Gur E. , Biran D. , Ron E. Z. . ( 2011; ). Regulated proteolysis in Gram-negative bacteria–how and when?. Nat Rev Microbiol 9:, 839–848. [CrossRef] [PubMed]
    [Google Scholar]
  29. Heeb S. , Valverde C. , Gigot-Bonnefoy C. , Haas D. . ( 2005; ). Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. . FEMS Microbiol Lett 243:, 251–258. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hensel M. , Shea J. E. , Gleeson C. , Jones M. D. , Dalton E. , Holden D. W. . ( 1995; ). Simultaneous identification of bacterial virulence genes by negative selection. . Science 269:, 400–403. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hormaeche C. E. . ( 1979; ). Natural resistance to Salmonella typhimurium in different inbred mouse strains. . Immunology 37:, 311–318.[PubMed]
    [Google Scholar]
  32. Iqbal M. , Philbin V. J. , Withanage G. S. , Wigley P. , Beal R. K. , Goodchild M. J. , Barrow P. , McConnell I. , Maskell D. J. et al. ( 2005; ). Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. . Infect Immun 73:, 2344–2350. [CrossRef] [PubMed]
    [Google Scholar]
  33. Iyoda S. , Watanabe H. . ( 2005; ). ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. . J Bacteriol 187:, 4086–4094. [CrossRef] [PubMed]
    [Google Scholar]
  34. Iyoda S. , Koizumi N. , Satou H. , Lu Y. , Saitoh T. , Ohnishi M. , Watanabe H. . ( 2006; ). The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. . J Bacteriol 188:, 5682–5692. [CrossRef] [PubMed]
    [Google Scholar]
  35. Jelsbak L. , Thomsen L. E. , Wallrodt I. , Jensen P. R. , Olsen J. E. . ( 2012; ). Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. . PLoS ONE 7:, e36149. [CrossRef] [PubMed]
    [Google Scholar]
  36. Johnston C. , Pegues D. A. , Hueck C. J. , Lee A. , Miller S. I. . ( 1996; ). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. . Mol Microbiol 22:, 715–727. [CrossRef] [PubMed]
    [Google Scholar]
  37. Jones B. D. . ( 2005; ). Salmonella invasion gene regulation: a story of environmental awareness. . J Microbiol 43:, 110–117.[PubMed]
    [Google Scholar]
  38. Kage H. , Takaya A. , Ohya M. , Yamamoto T. . ( 2008; ). Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. . J Bacteriol 190:, 2470–2478. [CrossRef] [PubMed]
    [Google Scholar]
  39. Knudsen G. M. , Nielsen M. B. , Grassby T. , Danino-Appleton V. , Thomsen L. E. , Colquhoun I. J. , Brocklehurst T. F. , Olsen J. E. , Hinton J. C. . ( 2012; ). A third mode of surface-associated growth: immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS-directed transcriptional programme. . Environ. Microbiol. 14:, 1855–75.[PubMed] [CrossRef]
    [Google Scholar]
  40. Kowarz L. , Coynault C. , Robbe-Saule V. , Norel F. . ( 1994; ). The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. . J Bacteriol 176:, 6852–6860.[PubMed]
    [Google Scholar]
  41. Krogfelt K. A. , Hjulgaard M. , Sørensen K. , Cohen P. S. , Givskov M. . ( 2000; ). rpoS gene function is a disadvantage for Escherichia coli BJ4 during competitive colonization of the mouse large intestine. . Infect Immun 68:, 2518–2524. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lawhon S. D. , Frye J. G. , Suyemoto M. , Porwollik S. , McClelland M. , Altier C. . ( 2003; ). Global regulation by CsrA in Salmonella typhimurium. . Mol Microbiol 48:, 1633–1645. [CrossRef] [PubMed]
    [Google Scholar]
  43. Li Y. , Yamazaki A. , Zou L. , Biddle E. , Zeng Q. , Wang Y. , Lin H. , Wang Q. , Yang C. H. . ( 2010; ). ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence. . Mol Plant Microbe Interact 23:, 871–878. [CrossRef] [PubMed]
    [Google Scholar]
  44. Lin D. , Rao C. V. , Slauch J. M. . ( 2008; ). The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. . J Bacteriol 190:, 87–97. [CrossRef] [PubMed]
    [Google Scholar]
  45. Lostroh C. P. , Lee C. A. . ( 2001; ). The Salmonella pathogenicity island-1 type III secretion system. . Microbes Infect 3:, 1281–1291. [CrossRef] [PubMed]
    [Google Scholar]
  46. Lucas R. L. , Lee C. A. . ( 2001; ). Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. . J Bacteriol 183:, 2733–2745. [CrossRef] [PubMed]
    [Google Scholar]
  47. Maloy S. R. , Stewart V. J. , Taylor R. K. . ( 1996; ). Genetic Analysis of Pathogenic Bacteria. New York:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  48. Martínez L. C. , Yakhnin H. , Camacho M. I. , Georgellis D. , Babitzke P. , Puente J. L. , Bustamante V. H. . ( 2011; ). Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. . Mol Microbiol 80:, 1637–1656. [CrossRef] [PubMed]
    [Google Scholar]
  49. Matiasovicova J. , Adams P. , Barrow P. A. , Hradecka H. , Malcova M. , Karpiskova R. , Budinska E. , Pilousova L. , Rychlik I. . ( 2007; ). Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. . Arch Microbiol 187:, 415–424. [CrossRef] [PubMed]
    [Google Scholar]
  50. Matsui H. , Suzuki M. , Isshiki Y. , Kodama C. , Eguchi M. , Kikuchi Y. , Motokawa K. , Takaya A. , Tomoyasu T. , Yamamoto T. . ( 2003; ). Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. . Infect Immun 71:, 30–39. [CrossRef] [PubMed]
    [Google Scholar]
  51. Methner U. , Barrow P. A. , Gregorova D. , Rychlik I. . ( 2004; ). Intestinal colonisation-inhibition and virulence of Salmonella phoP, rpoS and ompC deletion mutants in chickens. . Vet Microbiol 98:, 37–43. [CrossRef] [PubMed]
    [Google Scholar]
  52. Mukherjee A. , Cui Y. , Ma W. , Liu Y. , Ishihama A. , Eisenstark A. , Chatterjee A. K. . ( 1998; ). RpoS (sigma-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. . J Bacteriol 180:, 3629–3634.[PubMed]
    [Google Scholar]
  53. Ó’Cróinín T. , Dorman C. J. . ( 2007; ). Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. . Mol Microbiol 66:, 237–251. [CrossRef] [PubMed]
    [Google Scholar]
  54. Olsen J. E. , Hoegh-Andersen K. H. , Casadesús J. , Rosenkranzt J. , Chadfield M. S. , Thomsen L. E. . ( 2013; ). The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. . BMC Microbiol 13:, 67. [CrossRef] [PubMed]
    [Google Scholar]
  55. Patten C. L. , Kirchhof M. G. , Schertzberg M. R. , Morton R. A. , Schellhorn H. E. . ( 2004; ). Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. . Mol Genet Genomics 272:, 580–591. [CrossRef] [PubMed]
    [Google Scholar]
  56. Pizarro-Cerdá J. , Cossart P. . ( 2006; ). Bacterial adhesion and entry into host cells. . Cell 124:, 715–727. [CrossRef] [PubMed]
    [Google Scholar]
  57. Raffatellu M. , Wilson R. P. , Chessa D. , Andrews-Polymenis H. , Tran Q. T. , Lawhon S. , Khare S. , Adams L. G. , Bäumler A. J. . ( 2005; ). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. . Infect Immun 73:, 146–154. [CrossRef] [PubMed]
    [Google Scholar]
  58. Romeo T. . ( 1998; ). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. . Mol Microbiol 29:, 1321–1330. [CrossRef] [PubMed]
    [Google Scholar]
  59. Schechter L. M. , Damrauer S. M. , Lee C. A. . ( 1999; ). Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. . Mol Microbiol 32:, 629–642. [CrossRef] [PubMed]
    [Google Scholar]
  60. Schlumberger M. C. , Hardt W. D. . ( 2006; ). Salmonella type III secretion effectors: pulling the host cell’s strings. . Curr Opin Microbiol 9:, 46–54. [CrossRef] [PubMed]
    [Google Scholar]
  61. Schweder T. , Lee K. H. , Lomovskaya O. , Matin A. . ( 1996; ). Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. . J Bacteriol 178:, 470–476.[PubMed]
    [Google Scholar]
  62. Takaya A. , Tomoyasu T. , Tokumitsu A. , Morioka M. , Yamamoto T. . ( 2002; ). The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. . J Bacteriol 184:, 224–232. [CrossRef] [PubMed]
    [Google Scholar]
  63. Takaya A. , Kubota Y. , Isogai E. , Yamamoto T. . ( 2005; ). Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. . Mol Microbiol 55:, 839–852. [CrossRef] [PubMed]
    [Google Scholar]
  64. Thijs I. M. V. , De Keersmaecker S. C. J. , Fadda A. , Engelen K. , Zhao H. , McClelland M. , Marchal K. , Vanderleyden J. . ( 2007; ). Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. . J Bacteriol 189:, 4587–4596. [CrossRef] [PubMed]
    [Google Scholar]
  65. Thomsen L. E. , Olsen J. E. , Foster J. W. , Ingmer H. . ( 2002; ). ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. . Microbiology 148:, 2727–2733.[PubMed]
    [Google Scholar]
  66. Tomoyasu T. , Ohkishi T. , Ukyo Y. , Tokumitsu A. , Takaya A. , Suzuki M. , Sekiya K. , Matsui H. , Kutsukake K. , Yamamoto T. . ( 2002; ). The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. . J Bacteriol 184:, 645–653. [CrossRef] [PubMed]
    [Google Scholar]
  67. Tomoyasu T. , Takaya A. , Isogai E. , Yamamoto T. . ( 2003; ). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. . Mol Microbiol 48:, 443–452. [CrossRef] [PubMed]
    [Google Scholar]
  68. Tomoyasu T. , Takaya A. , Handa Y. , Karata K. , Yamamoto T. . ( 2005; ). ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli. . FEMS Microbiol Lett 253:, 59–66. [CrossRef] [PubMed]
    [Google Scholar]
  69. Vogel J. . ( 2009; ). A rough guide to the non-coding RNA world of Salmonella. . Mol Microbiol 71:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  70. Webb C. , Moreno M. , Wilmes-Riesenberg M. , Curtiss R. III , Foster J. W. . ( 1999; ). Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. . Mol Microbiol 34:, 112–123. [CrossRef] [PubMed]
    [Google Scholar]
  71. Weber H. , Polen T. , Heuveling J. , Wendisch V. F. , Hengge R. . ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. . J Bacteriol 187:, 1591–1603. [CrossRef] [PubMed]
    [Google Scholar]
  72. Wickner S. , Maurizi M. R. , Gottesman S. . ( 1999; ). Posttranslational quality control: folding, refolding, and degrading proteins. . Science 286:, 1888–1893. [CrossRef] [PubMed]
    [Google Scholar]
  73. Wilmes-Riesenberg M. R. , Foster J. W. , Curtiss R. III . ( 1997; ). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. . Infect Immun 65:, 203–210.[PubMed]
    [Google Scholar]
  74. Yakhnin H. , Yakhnin A. V. , Baker C. S. , Sineva E. , Berezin I. , Romeo T. , Babitzke P. . ( 2011; ). Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. . Mol Microbiol 81:, 689–704. [CrossRef] [PubMed]
    [Google Scholar]
  75. Yamamoto T. , Sashinami H. , Takaya A. , Tomoyasu T. , Matsui H. , Kikuchi Y. , Hanawa T. , Kamiya S. , Nakane A. . ( 2001; ). Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. . Infect Immun 69:, 3164–3174. [CrossRef] [PubMed]
    [Google Scholar]
  76. Yoon H. , McDermott J. E. , Porwollik S. , McClelland M. , Heffron F. . ( 2009; ). Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. . PLoS Pathog 5:, e1000306. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065797-0
Loading
/content/journal/micro/10.1099/mic.0.065797-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error