1887

Abstract

In a previous study, two proteins identified as hyaluronidases were detected in spent media by MS and found to be in greater quantity in the and mutant strains when compared with the parent and mutant strains of UAMS-1. In the present study, spent media and total RNA were isolated from UAMS-1 and its regulatory mutants and analysed for hyaluronidase activity and steady-state hyaluronidase () RNA message levels. Hyaluronidase activity was observed throughout all time points examined regardless of the regulatory effects of and but activity was always substantially higher in the and mutant strains than in the UAMS-1 parent and mutant strains. Northern analysis did not detect message for either the UAMS-1 parent or the mutant strains at any time point examined, while steady-state message levels were detected throughout growth for the mutant strain, but only at exponential and early post-exponential growth for the mutant strain. An biofilm plate assay, pre-coated with human plasma as a source of hyaluronic acid, demonstrated no significant increase in biofilm for a mutant strain of UAMS-1 defective in hyaluronidase activity when compared with the mutant strain. These data indicate that, while message levels and hyaluronidase activity are elevated in the mutant strains of UAMS-1, the increase in activity did not contribute to the biofilm-negative phenotype observed in the mutant strain of UAMS-1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065367-0
2013-04-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/782.html?itemId=/content/journal/micro/10.1099/mic.0.065367-0&mimeType=html&fmt=ahah

References

  1. Bae T., Schneewind O.. ( 2006;). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid55:58–63 [CrossRef][PubMed]
    [Google Scholar]
  2. Beenken K. E., Blevins J. S., Smeltzer M. S.. ( 2003;). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun71:4206–4211[PubMed][CrossRef]
    [Google Scholar]
  3. Beenken K. E., Dunman P. M., McAleese F., Macapagal D., Murphy E., Projan S. J., Blevins J. S., Smeltzer M. S.. ( 2004;). Global gene expression in Staphylococcus aureus biofilms. J Bacteriol186:4665–4684 [CrossRef][PubMed]
    [Google Scholar]
  4. Blevins J. S., Beenken K. E., Elasri M. O., Hurlburt B. K., Smeltzer M. S.. ( 2002;). Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus . Infect Immun70:470–480[PubMed][CrossRef]
    [Google Scholar]
  5. Canard B., Garnier T., Saint-Joanis B., Cole S. T.. ( 1994;). Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens . Mol Gen Genet243:215–224[PubMed]
    [Google Scholar]
  6. Cassat J. E., Dunman P. M., McAleese F., Murphy E., Projan S. J., Smeltzer M. S.. ( 2005;). Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J Bacteriol187:576–592 [CrossRef][PubMed]
    [Google Scholar]
  7. Cassat J., Dunman P. M., Murphy E. J., Projan S. J., Beenken K. E., Palm K. J., Yang S.-J., Rice K. C., Bayles K. W., Smeltzer M. S.. ( 2006;). Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. Microbiology152:3075–3090 [CrossRef][PubMed]
    [Google Scholar]
  8. Chang S., Sievert D. M., Hageman J. C., Boulton M. L., Tenover F. C., Downes F. P., Shah S., Rudrik J. T., Pupp G. R.. & other authors ( 2003;). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med348:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  9. Cheng Q., Yu M. C., Reeves A. R., Salyers A. A.. ( 1995;). Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol177:3721–3727[PubMed]
    [Google Scholar]
  10. Diekema D. J., Pfaller M. A., Schmitz F. J., Smayevsky J., Bell J., Jones R. N., Beach M.. SENTRY Partcipants Group ( 2001;). Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis32:Suppl. 2S114–S132 [CrossRef][PubMed]
    [Google Scholar]
  11. Diep B. A., Gill S. R., Chang R. F., Phan T. H., Chen J. H., Davidson M. G., Lin F., Lin J., Carleton H. A.. & other authors ( 2006;). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus . Lancet367:731–739 [CrossRef][PubMed]
    [Google Scholar]
  12. Duthie E. S., Lorenz L. L.. ( 1952;). Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol6:95–107[PubMed][CrossRef]
    [Google Scholar]
  13. Farrell A. M., Taylor D., Holland K. T.. ( 1995;). Cloning, nucleotide sequence determination and expression of the Staphylococcus aureus hyaluronate lyase gene. FEMS Microbiol Lett130:81–85[PubMed]
    [Google Scholar]
  14. Ficko-Blean E., Boraston A. B.. ( 2005;). Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens . Acta Crystallogr Sect F Struct Biol Cryst Commun61:834–836 [CrossRef][PubMed]
    [Google Scholar]
  15. Gertz S., Engelmann S., Schmid R., Ziebandt A.-K., Tischer K., Scharf C., Hacker J., Hecker M.. ( 2000;). Characterization of the σB regulon in Staphylococcus aureus . J Bacteriol182:6983–6991[PubMed][CrossRef]
    [Google Scholar]
  16. Giachino P., Engelmann S., Bischoff M.. ( 2001;). σ(B) activity depends on RsbU in Staphylococcus aureus . J Bacteriol183:1843–1852 [CrossRef][PubMed]
    [Google Scholar]
  17. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S.. ( 1995;). Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun63:3373–3380[PubMed]
    [Google Scholar]
  18. Girish K. S., Kemparaju K.. ( 2007;). The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci80:1921–1943 [CrossRef][PubMed]
    [Google Scholar]
  19. Götz F.. ( 2002;). Staphylococcus and biofilms. Mol Microbiol43:1367–1378 [CrossRef][PubMed]
    [Google Scholar]
  20. Hart M. E., Smeltzer M. S., Iandolo J. J.. ( 1993;). The extracellular protein regulator (xpr) affects exoprotein and agr mRNA levels in Staphylococcus aureus . J Bacteriol175:7875–7879[PubMed]
    [Google Scholar]
  21. Hart M. E., Hart M. J., Roop A. J.. ( 2009;). Genotypic and phenotypic assessment of hyaluronidase among type strains of a select group of staphylococcal species. Int J Microbiol2009:614371[PubMed][CrossRef]
    [Google Scholar]
  22. Hecker M., Engelmann S., Cordwell S. J.. ( 2003;). Proteomics of Staphylococcus aureus–current state and future challenges. J Chromatogr B Analyt Technol Biomed Life Sci787:179–195[PubMed][CrossRef]
    [Google Scholar]
  23. Highlander S. K., Hultén K. G., Qin X., Jiang H., Yerrapragada S., Mason E. O. Jr, Shang Y., Williams T. M., Fortunov R. M.. & other authors ( 2007;). Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus . BMC Microbiol7:99 [CrossRef][PubMed]
    [Google Scholar]
  24. Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F. C.. ( 1997;). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother40:135–136[PubMed][CrossRef]
    [Google Scholar]
  25. Holden M. T. G., Feil E. J., Lindsay J. A., Peacock S. J., Day N. P. J., Enright M. C., Foster T. J., Moore C. E., Hurst L.. & other authors ( 2004;). Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A101:9786–9791 [CrossRef][PubMed]
    [Google Scholar]
  26. Homer K., Shain H., Beighton D.. ( 1997;). The role of hyaluronidase in growth of Streptococcus intermedius on hyaluronate. Adv Exp Med Biol418:681–683[PubMed]
    [Google Scholar]
  27. Hynes W. L., Walton S. L.. ( 2000;). Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett183:201–207[PubMed][CrossRef]
    [Google Scholar]
  28. Jones R. C., Deck J., Edmondson R. D., Hart M. E.. ( 2008;). Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry. J Bacteriol190:5265–5278 [CrossRef][PubMed]
    [Google Scholar]
  29. Karlsson A., Arvidson S.. ( 2002;). Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA . Infect Immun70:4239–4246 [CrossRef][PubMed]
    [Google Scholar]
  30. Kennedy A. D., Otto M., Braughton K. R., Whitney A. R., Chen L., Mathema B., Mediavilla J. R., Byrne K. A., Parkins L. D.. & other authors ( 2008;). Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A105:1327–1332 [CrossRef][PubMed]
    [Google Scholar]
  31. Kersey P., Bower L., Morris L., Horne A., Petryszak R., Kanz C., Kanapin A., Das U., Michoud K.. & other authors ( 2005;). Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. Nucleic Acids Res33:Database issueD297–D302 [CrossRef][PubMed]
    [Google Scholar]
  32. Kullik I., Giachino P., Fuchs T.. ( 1998;). Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol180:4814–4820[PubMed]
    [Google Scholar]
  33. Laurent T. C., Fraser J. R. E.. ( 1992;). Hyaluronan. FASEB J6:2397–2404[PubMed]
    [Google Scholar]
  34. Lindsay J. A., Holden M. T. G.. ( 2004;). Staphylococcus aureus: superbug, super genome?. Trends Microbiol12:378–385 [CrossRef][PubMed]
    [Google Scholar]
  35. Loffler C. A., MacDougall C.. ( 2007;). Update on prevalence and treatment of methicillin-resistant Staphylococcus aureus infections. Expert Rev Anti Infect Ther5:961–981 [CrossRef][PubMed]
    [Google Scholar]
  36. Makris G., Wright J. D., Ingham E., Holland K. T.. ( 2004;). The hyaluronate lyase of Staphylococcus aureus – a virulence factor?. Microbiology150:2005–2013 [CrossRef][PubMed]
    [Google Scholar]
  37. Maple P. A. C., Hamilton-Miller J. M. T., Brumfitt W.. ( 1989;). World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus . Lancet333:537–540 [CrossRef][PubMed]
    [Google Scholar]
  38. Pané-Farré J., Jonas B., Förstner K., Engelmann S., Hecker M.. ( 2006;). The σB regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol296:237–258[PubMed][CrossRef]
    [Google Scholar]
  39. Pecharki D., Petersen F. C., Scheie A. A.. ( 2008;). Role of hyaluronidase in Streptococcus intermedius biofilm. Microbiology154:932–938[PubMed][CrossRef]
    [Google Scholar]
  40. Rautela G. S., Abramson C.. ( 1973;). Crystallization and partial characterization of Staphylococcus aureus hyaluronate lyase. Arch Biochem Biophys158:687–694[PubMed][CrossRef]
    [Google Scholar]
  41. Rood J. I., Cole S. T.. ( 1991;). Molecular genetics and pathogenesis of Clostridium perfringens . Microbiol Rev55:621–648[PubMed]
    [Google Scholar]
  42. Saïd-Salim B., Mathema B., Kreiswirth B. N.. ( 2003;). Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect Control Hosp Epidemiol24:451–455[PubMed][CrossRef]
    [Google Scholar]
  43. Senn M. M., Giachino P., Homerova D., Steinhuber A., Strassner J., Kormanec J., Flückiger U., Berger-Bächi B., Bischoff M.. ( 2005;). Molecular analysis and organization of the σB operon in Staphylococcus aureus . J Bacteriol187:8006–8019[PubMed][CrossRef]
    [Google Scholar]
  44. Shain H., Homer K. A., Beighton D.. ( 1996;). Degradation and utilisation of chondroitin sulphate by Streptococcus intermedius . J Med Microbiol44:372–380 [CrossRef][PubMed]
    [Google Scholar]
  45. Shaw L., Golonka E., Potempa J., Foster S. J.. ( 2004;). The role and regulation of the extracellular proteases of Staphylococcus aureus . Microbiology150:217–228 [CrossRef][PubMed]
    [Google Scholar]
  46. Shimizu T., Ohtani K., Hirakawa H., Ohshima K., Yamashita A., Shiba T., Ogasawara N., Hattori M., Kuhara S., Hayashi H.. ( 2002;). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A99:996–1001 [CrossRef][PubMed]
    [Google Scholar]
  47. Smith L. D.. ( 1979;). Virulence factors of Clostridium perfringens . Rev Infect Dis1:254–262 [CrossRef][PubMed]
    [Google Scholar]
  48. Snodgrass J. L., Mohamed N., Ross J. M., Sau S., Lee C. Y., Smeltzer M. S.. ( 1999;). Functional analysis of the Staphylococcus aureus collagen adhesin B domain. Infect Immun67:3952–3959[PubMed]
    [Google Scholar]
  49. Srinivasan A., Dick J. D., Perl T. M.. ( 2002;). Vancomycin resistance in staphylococci. Clin Microbiol Rev15:430–438 [CrossRef][PubMed]
    [Google Scholar]
  50. Starr C. R., Engleberg N. C.. ( 2006;). Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect Immun74:40–48[PubMed][CrossRef]
    [Google Scholar]
  51. Steiner B., Cruce D.. ( 1992;). A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal Biochem200:405–410 [CrossRef][PubMed]
    [Google Scholar]
  52. Stern R., Jedrzejas M. J.. ( 2006;). Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev106:818–839[PubMed][CrossRef]
    [Google Scholar]
  53. Styers D., Sheehan D. J., Hogan P., Sahm D. F.. ( 2006;). Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob5:2 [CrossRef][PubMed]
    [Google Scholar]
  54. Taylor D., Holland K. T.. ( 1989;). Amino acid requirements for the growth and production of some exocellular products of Staphylococcus aureus . J Appl Bacteriol66:319–329 [CrossRef][PubMed]
    [Google Scholar]
  55. Taylor D., Holland K. T.. ( 1991;). Differential regulation of toxic shock syndrome toxin-1 and hyaluronate lyase production by Staphylococcus aureus . The Staphylococci, Zbl. Bakt. Suppl. 21209–212 Jeljaszewicz J., Ciborowski P.. Stuttgart: Gustav Fischer Verlag;
    [Google Scholar]
  56. Tenover F. C., Weigel L. M., Appelbaum P. C., McDougal L. K., Chaitram J., McAllister S., Clark N., Killgore G., O’Hara C. M.. & other authors ( 2004;). Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother48:275–280 [CrossRef][PubMed]
    [Google Scholar]
  57. Tsang L. H., Cassat J. E., Shaw L. N., Beenken K. E., Smeltzer M. S.. ( 2008;). Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS ONE3:e3361 [CrossRef][PubMed]
    [Google Scholar]
  58. Valle J., Toledo-Arana A., Berasain C., Ghigo J.-M., Amorena B., Penadés J. R., Lasa I.. ( 2003;). SarA and not σB is essential for biofilm development by Staphylococcus aureus . Mol Microbiol48:1075–1087[PubMed][CrossRef]
    [Google Scholar]
  59. Whitener C. J., Park S. Y., Browne F. A., Parent L. J., Julian K., Bozdogan B., Appelbaum P. C., Chaitram J., Weigel L. M.. & other authors ( 2004;). Vancomycin-resistant Staphylococcus aureus in the absence of vancomycin exposure. Clin Infect Dis38:1049–1055 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065367-0
Loading
/content/journal/micro/10.1099/mic.0.065367-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error