1887

Abstract

Malic enzyme (ME) is one of the important enzymes for furnishing the cofactor NAD(P)H for the biosynthesis of fatty acids and sterols. Due to the existence of multiple ME isoforms in a range of oleaginous microbes, a molecular basis for the evolutionary relationships amongst the enzymes in oleaginous fungi was investigated using sequence analysis and structural modelling. Evolutionary distance and structural characteristics were used to discriminate the MEs of yeasts and fungi into several groups. Interestingly, the NADP-dependent MEs of had an unusual insertion region (FLxxPG) that was not found in other fungi. However, the subcellular compartment of the enzyme could not be clearly identified by an analysis of signal peptide sequences. A constructed structural model of the ME of suggested that the insertion region is located at the N-terminus of the enzyme (aa 159–163). In addition, it is presumably part of the dimer interface region of the enzyme, which might provide a continuously positively charged pocket for the efficient binding of negatively charged effector molecules. The discovery of the unique structure of the ME suggests the insertion region could be involved in particular kinetics of this enzyme, which may indicate its involvement in the lipogenesis of industrially important oleaginous microbes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065342-0
2013-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2548.html?itemId=/content/journal/micro/10.1099/mic.0.065342-0&mimeType=html&fmt=ahah

References

  1. Aktas D. F., Cook P. F.( 2008). Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Biochim Biophys Acta 1784:2059–2064 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Boles E., de Jong-Gubbels P., Pronk J. T.( 1998). Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882[PubMed]
    [Google Scholar]
  4. Chang G. G., Tong L.( 2003). Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733 [View Article][PubMed]
    [Google Scholar]
  5. Chang H. C., Chen L. Y., Lu Y. H., Li M. Y., Chen Y. H., Lin C. H., Chang G. G.( 2007). Metal ions stabilize a dimeric molten globule state between the open and closed forms of malic enzyme. Biophys J 93:3977–3988 [View Article][PubMed]
    [Google Scholar]
  6. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.( 2004). WebLogo: a sequence logo generator. Genome Res 14:1188–1190 [View Article][PubMed]
    [Google Scholar]
  7. Detarsio E., Wheeler M. C., Campos Bermúdez V. A., Andreo C. S., Drincovich M. F.( 2003). Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites. J Biol Chem 278:13757–13764 [View Article][PubMed]
    [Google Scholar]
  8. Edgar R. C.( 2004). muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113 [View Article][PubMed]
    [Google Scholar]
  9. Emanuelsson O., Nielsen H., Brunak S., von Heijne G.( 2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016 [View Article][PubMed]
    [Google Scholar]
  10. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M., Pieper U., Sali A.( 2006). Comparative protein structure modeling with modeller. Curr Prot Bioinfo 15:5.6.1–5.6.30 [View Article]
    [Google Scholar]
  11. Felsenstein J.( 1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Flipphi M., Sun J., Robellet X., Karaffa L., Fekete E., Zeng A. P., Kubicek C. P.( 2009). Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp.. Fungal Genet Biol 46:Suppl. 1S19–S44 [View Article][PubMed]
    [Google Scholar]
  13. Hong S.-P., Xue Z., Zhu P. P.( 2011). Upregulation to increase production of non-native products of interest in transgenic microorganisms. US Patent 0244512-A1.
    [Google Scholar]
  14. Hsieh J. Y., Chen S. H., Hung H. C.( 2009). Functional roles of the tetramer organization of malic enzyme. J Biol Chem 284:18096–18105 [View Article][PubMed]
    [Google Scholar]
  15. Hurley J. H., Chen R., Dean A. M.( 1996). Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ → NAD+ specificity-reversal mutant. Biochemistry 35:5670–5678 [View Article][PubMed]
    [Google Scholar]
  16. Karsten W. E., Pais J. E., Rao G. S., Harris B. G., Cook P. F.( 2003). Ascaris suum NAD-malic enzyme is activated by l-malate and fumarate binding to separate allosteric sites. Biochemistry 42:9712–9721 [View Article][PubMed]
    [Google Scholar]
  17. Katoh K., Toh H.( 2008). Recent developments in the mafft multiple sequence alignment program. Brief Bioinform 9:286–298 [View Article][PubMed]
    [Google Scholar]
  18. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O.& other authors ( 2005). Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161 [View Article][PubMed]
    [Google Scholar]
  19. MacKerell A. D. Jr, Bashford D., Bellott M., Dunbrack R. L. Jr, Evanseck J. D., Field M. J., Fisher S., Gao J., Guo H.& other authors ( 1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616 [View Article]
    [Google Scholar]
  20. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.( 2004). UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  21. Rao G. S., Coleman D. E., Karsten W. E., Cook P. F., Harris B. G.( 2003). Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. J Biol Chem 278:38051–38058 [View Article][PubMed]
    [Google Scholar]
  22. Rose P. W., Beran B., Bi C., Bluhm W. F., Dimitropoulos D., Goodsell D. S., Prlić A., Quesada M., Quinn G. B.& other authors ( 2011). The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:Database issueD392–D401 [View Article][PubMed]
    [Google Scholar]
  23. Rothermel B. A., Nelson T.( 1989). Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem 264:19587–19592[PubMed]
    [Google Scholar]
  24. Song Y., Wynn J. P., Li Y., Grantham D., Ratledge C.( 2001). A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515[PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.( 2011). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  26. Tang W., Zhang S., Tan H., Zhao Z. K.( 2010). Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128 [View Article][PubMed]
    [Google Scholar]
  27. Tao X., Yang Z., Tong L.( 2003). Crystal structures of substrate complexes of malic enzyme and insights into the catalytic mechanism. Structure 11:1141–1150 [View Article][PubMed]
    [Google Scholar]
  28. van der Giezen M., Rechinger K. B., Svendsen I., Durand R., Hirt R. P., Fèvre M., Embley T. M., Prins R. A.( 1997). A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol 23:11–21 [View Article][PubMed]
    [Google Scholar]
  29. Vongsangnak W., Zhang Y., Chen W., Ratledge C., Song Y.( 2012). Annotation and analysis of malic enzyme genes encoding for multiple isoforms in the fungus Mucor circinelloides CBS 277.49. Biotechnol Lett 34:941–947 [View Article][PubMed]
    [Google Scholar]
  30. Wang L., Chen W., Feng Y., Ren Y., Gu Z., Chen H., Wang H., Thomas M. J., Zhang B.& other authors ( 2011). Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6:e28319 [View Article][PubMed]
    [Google Scholar]
  31. Winning B. M., Bourguignon J., Leaver C. J.( 1994). Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chem 269:4780–4786[PubMed]
    [Google Scholar]
  32. Wynn J. P., Ratledge C.( 1997). Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257 [View Article]
    [Google Scholar]
  33. Wynn J. P., Hamid A. A., Ratledge C.( 1999). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917 [View Article][PubMed]
    [Google Scholar]
  34. Xu Y., Bhargava G., Wu H., Loeber G., Tong L.( 1999). Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure 7:877–889 [View Article][PubMed]
    [Google Scholar]
  35. Yang Z., Tong L.( 2000). Structural studies of a human malic enzyme. Protein Pept Lett 7:287–296
    [Google Scholar]
  36. Yang Z., Floyd D. L., Loeber G., Tong L.( 2000). Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol 7:251–257 [View Article][PubMed]
    [Google Scholar]
  37. Yang Z., Zhang H., Hung H. C., Kuo C. C., Tsai L. C., Yuan H. S., Chou W. Y., Chang G. G., Tong L.( 2002). Structural studies of the pigeon cytosolic NADP+-dependent malic enzyme. Protein Sci 11:332–341 [View Article][PubMed]
    [Google Scholar]
  38. Yu C. S., Chen Y. C., Lu C. H., Hwang J. K.( 2006). Prediction of protein subcellular localization. Proteins 64:643–651 [View Article][PubMed]
    [Google Scholar]
  39. Zelle R. M., de Hulster E., van Winden W. A., de Waard P., Dijkema C., Winkler A. A., Geertman J. M., van Dijken J. P., Pronk J. T., van Maris A. J. A.( 2008). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777 [View Article][PubMed]
    [Google Scholar]
  40. Zelle R. M., Harrison J. C., Pronk J. T., van Maris A. J. A.( 2011). Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 77:732–738 [View Article][PubMed]
    [Google Scholar]
  41. Zhang Y., Ratledge C.( 2008). Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res 112:725–730 [View Article][PubMed]
    [Google Scholar]
  42. Zhang Y., Adams I. P., Ratledge C.( 2007). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065342-0
Loading
/content/journal/micro/10.1099/mic.0.065342-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error