1887

Abstract

Malic enzyme (ME) is one of the important enzymes for furnishing the cofactor NAD(P)H for the biosynthesis of fatty acids and sterols. Due to the existence of multiple ME isoforms in a range of oleaginous microbes, a molecular basis for the evolutionary relationships amongst the enzymes in oleaginous fungi was investigated using sequence analysis and structural modelling. Evolutionary distance and structural characteristics were used to discriminate the MEs of yeasts and fungi into several groups. Interestingly, the NADP-dependent MEs of had an unusual insertion region (FLxxPG) that was not found in other fungi. However, the subcellular compartment of the enzyme could not be clearly identified by an analysis of signal peptide sequences. A constructed structural model of the ME of suggested that the insertion region is located at the N-terminus of the enzyme (aa 159–163). In addition, it is presumably part of the dimer interface region of the enzyme, which might provide a continuously positively charged pocket for the efficient binding of negatively charged effector molecules. The discovery of the unique structure of the ME suggests the insertion region could be involved in particular kinetics of this enzyme, which may indicate its involvement in the lipogenesis of industrially important oleaginous microbes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065342-0
2013-12-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2548.html?itemId=/content/journal/micro/10.1099/mic.0.065342-0&mimeType=html&fmt=ahah

References

  1. Aktas D. F., Cook P. F..( 2008;). Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Biochim Biophys Acta1784:2059–2064 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Boles E., de Jong-Gubbels P., Pronk J. T..( 1998;). Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol180:2875–2882[PubMed]
    [Google Scholar]
  4. Chang G. G., Tong L..( 2003;). Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry42:12721–12733 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang H. C., Chen L. Y., Lu Y. H., Li M. Y., Chen Y. H., Lin C. H., Chang G. G..( 2007;). Metal ions stabilize a dimeric molten globule state between the open and closed forms of malic enzyme. Biophys J93:3977–3988 [CrossRef][PubMed]
    [Google Scholar]
  6. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E..( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  7. Detarsio E., Wheeler M. C., Campos Bermúdez V. A., Andreo C. S., Drincovich M. F..( 2003;). Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites. J Biol Chem278:13757–13764 [CrossRef][PubMed]
    [Google Scholar]
  8. Edgar R. C..( 2004;). muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics5:113 [CrossRef][PubMed]
    [Google Scholar]
  9. Emanuelsson O., Nielsen H., Brunak S., von Heijne G..( 2000;). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol300:1005–1016 [CrossRef][PubMed]
    [Google Scholar]
  10. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M., Pieper U., Sali A..( 2006;). Comparative protein structure modeling with modeller. Curr Prot Bioinfo15:5.6.1–5.6.30 [CrossRef]
    [Google Scholar]
  11. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  12. Flipphi M., Sun J., Robellet X., Karaffa L., Fekete E., Zeng A. P., Kubicek C. P..( 2009;). Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp.. Fungal Genet Biol46:Suppl. 1S19–S44 [CrossRef][PubMed]
    [Google Scholar]
  13. Hong S.-P., Xue Z., Zhu P. P..( 2011;). Upregulation to increase production of non-native products of interest in transgenic microorganisms. US Patent 0244512-A1.
    [Google Scholar]
  14. Hsieh J. Y., Chen S. H., Hung H. C..( 2009;). Functional roles of the tetramer organization of malic enzyme. J Biol Chem284:18096–18105 [CrossRef][PubMed]
    [Google Scholar]
  15. Hurley J. H., Chen R., Dean A. M..( 1996;). Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ → NAD+ specificity-reversal mutant. Biochemistry35:5670–5678 [CrossRef][PubMed]
    [Google Scholar]
  16. Karsten W. E., Pais J. E., Rao G. S., Harris B. G., Cook P. F..( 2003;). Ascaris suum NAD-malic enzyme is activated by l-malate and fumarate binding to separate allosteric sites. Biochemistry42:9712–9721 [CrossRef][PubMed]
    [Google Scholar]
  17. Katoh K., Toh H..( 2008;). Recent developments in the mafft multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  18. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O..& other authors ( 2005;). Genome sequencing and analysis of Aspergillus oryzae. Nature438:1157–1161 [CrossRef][PubMed]
    [Google Scholar]
  19. MacKerell A. D. Jr, Bashford D., Bellott M., Dunbrack R. L. Jr, Evanseck J. D., Field M. J., Fisher S., Gao J., Guo H..& other authors ( 1998;). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B102:3586–3616 [CrossRef]
    [Google Scholar]
  20. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E..( 2004;). UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  21. Rao G. S., Coleman D. E., Karsten W. E., Cook P. F., Harris B. G..( 2003;). Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. J Biol Chem278:38051–38058 [CrossRef][PubMed]
    [Google Scholar]
  22. Rose P. W., Beran B., Bi C., Bluhm W. F., Dimitropoulos D., Goodsell D. S., Prlić A., Quesada M., Quinn G. B..& other authors ( 2011;). The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res39:Database issueD392–D401 [CrossRef][PubMed]
    [Google Scholar]
  23. Rothermel B. A., Nelson T..( 1989;). Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem264:19587–19592[PubMed]
    [Google Scholar]
  24. Song Y., Wynn J. P., Li Y., Grantham D., Ratledge C..( 2001;). A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology147:1507–1515[PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Tang W., Zhang S., Tan H., Zhao Z. K..( 2010;). Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol45:121–128 [CrossRef][PubMed]
    [Google Scholar]
  27. Tao X., Yang Z., Tong L..( 2003;). Crystal structures of substrate complexes of malic enzyme and insights into the catalytic mechanism. Structure11:1141–1150 [CrossRef][PubMed]
    [Google Scholar]
  28. van der Giezen M., Rechinger K. B., Svendsen I., Durand R., Hirt R. P., Fèvre M., Embley T. M., Prins R. A..( 1997;). A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol23:11–21 [CrossRef][PubMed]
    [Google Scholar]
  29. Vongsangnak W., Zhang Y., Chen W., Ratledge C., Song Y..( 2012;). Annotation and analysis of malic enzyme genes encoding for multiple isoforms in the fungus Mucor circinelloides CBS 277.49. Biotechnol Lett34:941–947 [CrossRef][PubMed]
    [Google Scholar]
  30. Wang L., Chen W., Feng Y., Ren Y., Gu Z., Chen H., Wang H., Thomas M. J., Zhang B..& other authors ( 2011;). Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE6:e28319 [CrossRef][PubMed]
    [Google Scholar]
  31. Winning B. M., Bourguignon J., Leaver C. J..( 1994;). Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chem269:4780–4786[PubMed]
    [Google Scholar]
  32. Wynn J. P., Ratledge C..( 1997;). Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology143:253–257 [CrossRef]
    [Google Scholar]
  33. Wynn J. P., Hamid A. A., Ratledge C..( 1999;). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145:1911–1917 [CrossRef][PubMed]
    [Google Scholar]
  34. Xu Y., Bhargava G., Wu H., Loeber G., Tong L..( 1999;). Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure7:877–889 [CrossRef][PubMed]
    [Google Scholar]
  35. Yang Z., Tong L..( 2000;). Structural studies of a human malic enzyme. Protein Pept Lett7:287–296
    [Google Scholar]
  36. Yang Z., Floyd D. L., Loeber G., Tong L..( 2000;). Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol7:251–257 [CrossRef][PubMed]
    [Google Scholar]
  37. Yang Z., Zhang H., Hung H. C., Kuo C. C., Tsai L. C., Yuan H. S., Chou W. Y., Chang G. G., Tong L..( 2002;). Structural studies of the pigeon cytosolic NADP+-dependent malic enzyme. Protein Sci11:332–341 [CrossRef][PubMed]
    [Google Scholar]
  38. Yu C. S., Chen Y. C., Lu C. H., Hwang J. K..( 2006;). Prediction of protein subcellular localization. Proteins64:643–651 [CrossRef][PubMed]
    [Google Scholar]
  39. Zelle R. M., de Hulster E., van Winden W. A., de Waard P., Dijkema C., Winkler A. A., Geertman J. M., van Dijken J. P., Pronk J. T., van Maris A. J. A..( 2008;). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol74:2766–2777 [CrossRef][PubMed]
    [Google Scholar]
  40. Zelle R. M., Harrison J. C., Pronk J. T., van Maris A. J. A..( 2011;). Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol77:732–738 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang Y., Ratledge C..( 2008;). Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res112:725–730 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang Y., Adams I. P., Ratledge C..( 2007;). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065342-0
Loading
/content/journal/micro/10.1099/mic.0.065342-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error