1887

Abstract

The opportunistic pathogen produces multiple pigments during culture and during colonization of burn wounds and in the airways of cystic fibrosis (CF) patients. One pigment is a deep ‘merlot’-coloured compound known as aeruginosin A (AA). However, the red pigment(s) of are often collectively called pyorubrin, of which there is no known chemical composition. Here, we purified and confirmed by MS and assessed the physicochemical properties of AA (2-amino-6-carboxy-10-methylphenazinium betaine) by first focusing on its ability to redox-cycle using cyclic voltammetry and its spectroscopic (as well as fluorescent) properties, experiments that were conducted at physiological pH. AA exhibited reversible electrochemistry at a glassy carbon electrode within a potential range of −500 to −200 mV. Electrochemical anodic and cathodic peak currents were observed at −327 and −360 mV, respectively, with a low formal reduction potential of −343.5 mV versus Ag/AgCl. AA absorbed at 516 nm and fluoresced at 606 nm. Results from the spectro-electrochemistry of pyorubrin revealed that its strongest fluorescence was in its parent or oxidized form. Production of AA by was found to be controlled by the component of the intercellular signalling system known as quorum sensing and was produced maximally during the stationary growth phase. However, unlike its downstream blue redox-active toxin, pyocyanin, AA had no adverse effects on methicillin-resistant USA300, DH5-α or human keratinocytes. We close with some thoughts on the potential commercial use(s) of AA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065235-0
2013-08-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1736.html?itemId=/content/journal/micro/10.1099/mic.0.065235-0&mimeType=html&fmt=ahah

References

  1. Abusriwil H., Stockley R. A.. ( 2007;). The interaction of host and pathogen factors in chronic obstructive pulmonary disease exacerbations and their role in tissue damage. Proc Am Thorac Soc4:611–617 [CrossRef][PubMed]
    [Google Scholar]
  2. Bauer A. W., Perry D. M., Kirby W. M.. ( 1959;). Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results. AMA Arch Intern Med104:208–216 [CrossRef][PubMed]
    [Google Scholar]
  3. BBC ( 2008;). Europe-wide food colour ban call. BBC News
    [Google Scholar]
  4. Blazevic D. J., Koepcke M. H., Matsen J. M.. ( 1973;). Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Appl Microbiol25:107–110[PubMed]
    [Google Scholar]
  5. Brint J. M., Ohman D. E.. ( 1995;). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol177:7155–7163[PubMed]
    [Google Scholar]
  6. Brown V. I., Lowbury E. J.. ( 1965;). Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa . J Clin Pathol18:752–756 [CrossRef][PubMed]
    [Google Scholar]
  7. Byng G. S., Eustice D. C., Jensen R. A.. ( 1979;). Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa . J Bacteriol138:846–852[PubMed]
    [Google Scholar]
  8. Centers for Disease Control and Prevention . ( 2003;). Methicillin-resistant Staphylococcus aureus infections among competitive sports participants—Colorado, Pennsylvania, and Los Angeles County, 2000–2003. . MMWR Morb Mortal Wkly Rep52:793–795. Medline[PubMed]
    [Google Scholar]
  9. Chotirmall S. H., O’Donoghue E., Bennett K., Gunaratnam C., O’Neill S. J., McElvaney N. G.. ( 2010;). Sputum Candida albicans presages FEV? decline and hospital-treated exacerbations in cystic fibrosis. Chest138:1186–1195 [CrossRef][PubMed]
    [Google Scholar]
  10. Cox C. D.. ( 1979;). Isolation of an iron-binding compound from Pseudomonas aeruginosa . J Bacteriol137:357–364[PubMed]
    [Google Scholar]
  11. Cox C. D.. ( 1986;). Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun52:263–270[PubMed]
    [Google Scholar]
  12. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P.. ( 2007;). Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol189:7653–7662 [CrossRef][PubMed]
    [Google Scholar]
  13. Flugge K. F. W.. ( 1886;). Die Mikroorganismen. F C W Vogel, Leipzig 2 Aufl1–692
    [Google Scholar]
  14. Gibson J., Sood A., Hogan D. A.. ( 2009;). Pseudomonas aeruginosa–Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol75:504–513 [CrossRef][PubMed]
    [Google Scholar]
  15. Hansford G. S., Holliman F. G., Herbert R. B.. ( 1972;). Pigments of Pseudomonas species. IV. In vitro and in vivo conversion of 5-methylphenazinium-1-carboxylate into aeruginosin A. J Chem Soc Perkin 11:103–105 [CrossRef][PubMed]
    [Google Scholar]
  16. Hassan H. M., Fridovich I.. ( 1980;). Mechanism of the antibiotic action pyocyanine. J Bacteriol141:156–163[PubMed]
    [Google Scholar]
  17. Hassett D. J., Charniga L., Bean K. A., Ohman D. E., Cohen M. S.. ( 1992;). Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun60:328–336[PubMed]
    [Google Scholar]
  18. Hassett D. J., Ma J.-F., Elkins J. G., McDermott T. R., Ochsner U. A., West S. E., Huang C. T., Fredericks J., Burnett S.. & other authors ( 1999;). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol34:1082–1093 [CrossRef][PubMed]
    [Google Scholar]
  19. Hassett D. J., Ochsner U. A., de Kievit T. R., Iglewski B. H., Passador L., Livinghouse T. S., McDermott T. R., Whitsett J. A.. ( 2002;). Genetics of quorum sensing circuitry in Pseudomonas aeruginosa: implications for control of pathogenesis, biofilm formation and antibiotic/biocide resistance. Modern Microbial Genetics, 2nd edn.261–272 Streips U., Yasbin R.. New York: Wiley-Liss Publications; [CrossRef]
    [Google Scholar]
  20. Herbert R. B., Holliman F. G.. ( 1969;). Pigments of pseudomonas species. II. Structure of aeruginosin B. J Chem Soc Perkin 118:2517–2520[PubMed]
    [Google Scholar]
  21. Hoffman L. R., Kulasekara H. D., Emerson J., Houston L. S., Burns J. L., Ramsey B. W., Miller S. I.. ( 2009;). Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros8:66–70 [CrossRef][PubMed]
    [Google Scholar]
  22. Holder I. A.. ( 1983;). Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: effect of treatment with protease inhibitors. Rev Infect Dis5:Suppl. 5S914–S921 [CrossRef][PubMed]
    [Google Scholar]
  23. Holliman F. G.. ( 1969;). Pigments of Pseudomonas species. Part I. Structure and synthesis of aeruginosin A. J Chem Soc C19:2514–2516[CrossRef]
    [Google Scholar]
  24. Holloway B. W.. ( 1955;). Genetic recombination in Pseudomonas aeruginosa . J Gen Microbiol13:572–581 [CrossRef][PubMed]
    [Google Scholar]
  25. Jensen R. A., Pierson D. L.. ( 1975;). Evolutionary implications of different types of microbial enzymology for l-tyrosine biosynthesis. Nature254:667–671 [CrossRef][PubMed]
    [Google Scholar]
  26. Kandela S. A., al-Shibib A. S., al-Khayat B. H.. ( 1997;). A study of purified pyorubrin produced by local Pseudomonas aeruginosa . Acta Microbiol Pol46:37–43[PubMed]
    [Google Scholar]
  27. Lau G. W., Hassett D. J., Britigan B. E.. ( 2005;). Modulation of lung epithelial functions by Pseudomonas aeruginosa . Trends Microbiol13:389–397 [CrossRef][PubMed]
    [Google Scholar]
  28. Lewis J. P.. ( 2010;). Metal uptake in host–pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 200052:94–116 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu G. Y., Nizet V.. ( 2009;). Color me bad: microbial pigments as virulence factors. Trends Microbiol17:406–413 [CrossRef][PubMed]
    [Google Scholar]
  30. Liu G. Y., Doran K. S., Lawrence T., Turkson N., Puliti M., Tissi L., Nizet V.. ( 2004;). Sword and shield: linked group B streptococcal β-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Proc Natl Acad Sci U S A101:14491–14496 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu G. Y., Essex A., Buchanan J. T., Datta V., Hoffman H. M., Bastian J. F., Fierer J., Nizet V.. ( 2005;). Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med202:209–215 [CrossRef][PubMed]
    [Google Scholar]
  32. Loiseau-Marolleau M. L.. ( 1977;). [Virulence of human and environmental strains of “pseudomonas aeruginosa” in mice (author’s transl)]. Ann Microbiol (Paris)128A:61–68[PubMed]
    [Google Scholar]
  33. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S.. ( 2001;). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol183:6454–6465 [CrossRef][PubMed]
    [Google Scholar]
  34. Meyer J. M., Hohnadel D., Khan A., Cornelis P.. ( 1990;). Pyoverdin-facilitated iron uptake in Pseudomonas aeruginosa: immunological characterization of the ferripyoverdin receptor. Mol Microbiol4:1401–1405 [CrossRef][PubMed]
    [Google Scholar]
  35. Meyer J.-M., Neely A., Stintzi A., Georges C., Holder I. A.. ( 1996;). Pyoverdin is essential for virulence of Pseudomonas aeruginosa . Infect Immun64:518–523[PubMed]
    [Google Scholar]
  36. Morales D. K., Jacobs N. J., Rajamani S., Krishnamurthy M., Cubillos-Ruiz J. R., Hogan D. A.. ( 2010;). Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol78:1379–1392 [CrossRef][PubMed]
    [Google Scholar]
  37. Nurudeen T. A., Ahearn D. G.. ( 1979;). Regulation of melanin production by Cryptococcus neoformans . J Clin Microbiol10:724–729[PubMed]
    [Google Scholar]
  38. Ogunnariwo J., Hamilton-Miller J. M.. ( 1975;). Brown- and red-pigmented Pseudomonas aeruginosa: differentiation between melanin and pyorubrin. J Med Microbiol8:199–203 [CrossRef][PubMed]
    [Google Scholar]
  39. Palumbo S. A.. ( 1972;). Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa . J Bacteriol111:430–436[PubMed]
    [Google Scholar]
  40. Pauliukaite R., Ghica M. E., Barsan M. M., Brett C. M. A.. ( 2010;). Phanzines and polyphenazines in electrochemical sensors and biosensors. Anal Lett43:1588–1608 [CrossRef]
    [Google Scholar]
  41. Phillips I.. ( 1969;). Identification of Pseudomonas aeruginosa in the clinical laboratory. J Med Microbiol2:9–16 [CrossRef][PubMed]
    [Google Scholar]
  42. Price-Whelan A., Dietrich L. E. P., Newman D. K.. ( 2006;). Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol2:71–78 [CrossRef][PubMed]
    [Google Scholar]
  43. Propst C., Lubin L.. ( 1979;). Light-mediated changes in pigmentation of Pseudomonas aeruginosa cultures. J Gen Microbiol113:261–266 [CrossRef][PubMed]
    [Google Scholar]
  44. Ramos I., Dietrich L. E., Price-Whelan A., Newman D. K.. ( 2010;). Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol161:187–191 [CrossRef][PubMed]
    [Google Scholar]
  45. Ran H., Hassett D. J., Lau G. W.. ( 2003;). Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci U S A100:14315–14320 [CrossRef][PubMed]
    [Google Scholar]
  46. Reszka K. J., Xiong Y., Sallans L., Pasula R., Olakanmi O., Hassett D. J., Britigan B. E.. ( 2012;). Inactivation of the potent Pseudomonas aeruginosa cytotoxin pyocyanin by airway peroxidases and nitrite. Am J Physiol Lung Cell Mol Physiol302:L1044–L1056 [CrossRef][PubMed]
    [Google Scholar]
  47. Saha S., Thavasi R., Jayalakshmi S.. ( 2008;). Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol3:122–128 [CrossRef]
    [Google Scholar]
  48. Schaber J. A., Carty N. L., McDonald N. A., Graham E. D., Cheluvappa R., Griswold J. A., Hamood A. N.. ( 2004;). Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol53:841–853 [CrossRef][PubMed]
    [Google Scholar]
  49. Schaber J. A., Hammond A., Carty N. L., Williams S. C., Colmer-Hamood J. A., Burrowes B. H., Dhevan V., Griswold J. A., Hamood A. N.. ( 2007;). Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol56:738–748 [CrossRef][PubMed]
    [Google Scholar]
  50. Sherry B. A., Alava G., Tracey K. J., Martiney J., Cerami A., Slater A. F.. ( 1995;). Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1α, and MIP-1β) in vitro, and altered thermoregulation in vivo . J Inflamm45:85–96[PubMed]
    [Google Scholar]
  51. Takase H., Nitanai H., Hoshino K., Otani T.. ( 2000;). Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect Immun68:4498–4504 [CrossRef][PubMed]
    [Google Scholar]
  52. Thomassen M. J., Demko C. A., Boxerbaum B., Stern R. C., Kuchenbrod P. J.. ( 1979;). Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis140:873–880 [CrossRef][PubMed]
    [Google Scholar]
  53. van Duin D., Casadevall A., Nosanchuk J. D.. ( 2002;). Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother46:3394–3400 [CrossRef][PubMed]
    [Google Scholar]
  54. Vukomanovic D. V., Zoutman D. E., Stone J. A., Marks G. S., Brien J. F., Nakatsu K.. ( 1997;). Electrospray mass-spectrometric, spectrophotometric and electrochemical methods do not provide evidence for the binding of nitric oxide by pyocyanine at pH 7. Biochem J322:25–29[PubMed]
    [Google Scholar]
  55. Wang Y., Newman D. K.. ( 2008;). Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol42:2380–2386 [CrossRef][PubMed]
    [Google Scholar]
  56. Wilson R., Sykes D. A., Watson D., Rutman A., Taylor G. W., Cole P. J.. ( 1988;). Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun56:2515–2517[PubMed]
    [Google Scholar]
  57. Yabuuchi E., Ohyama A.. ( 1972;). Characterization of “pyomelanin”-producing strains of Pseudomonas aeruginosa . Int J Syst Bacteriol22:53–64 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065235-0
Loading
/content/journal/micro/10.1099/mic.0.065235-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error