1887

Abstract

ATCC 17906 is known to produce the siderophore acinetoferrin under iron-limiting conditions. Here, we show that an operon consisting of eight consecutive genes, named and , participates in the biosynthesis and transport of acinetoferrin, respectively. Transcription of the operon was found to be iron-regulated by a putative Fur box located in the promoter region of the first gene, . Homology searches suggest that and encode enzyme proteins involved in acinetoferrin biosynthesis and an outer-membrane receptor for ferric acinetoferrin, respectively. Mutants defective in and were unable to produce acinetoferrin or to express the ferric acinetoferrin receptor under iron-limiting conditions. These abilities were rescued by complementation of the mutants with native and genes. Secondary structure analysis predicted that the products of and may be inner-membrane proteins with 12 membrane-spanning helices that belong to the major facilitator superfamily proteins. ActC showed homology to RhtX, which has been characterized as an inner-membrane importer for ferric rhizobactin 1021 structurally similar to acinetoferrin. Compared to the parental ATCC 17906 strain, the mutant displayed about a 35 % reduction in secretion of acinetoferrin, which was restored by complementation with , suggesting that ActD acts as an exporter of the siderophore. Finally, the product was significantly similar to hypothetical proteins in certain bacteria, in which genes encoding ActBCA homologues are arranged in the same order as in . ATCC 17906. However, the function of ActB remains to be clarified.

Funding
This study was supported by the:
  • Ministry of Education, Culture, Sports, Science, and Technology of Japan (Award 22790140)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065177-0
2013-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/678.html?itemId=/content/journal/micro/10.1099/mic.0.065177-0&mimeType=html&fmt=ahah

References

  1. Allard K. A., Viswanathan V. K., Cianciotto N. P. ( 2006). lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363 [View Article] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. ( 2003). Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [View Article] [PubMed]
    [Google Scholar]
  4. Antunes L. C. S., Imperi F., Towner K. J., Visca P. ( 2011). Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol 162:279–284 [View Article] [PubMed]
    [Google Scholar]
  5. Aranda J., Poza M., Pardo B. G., Rumbo S., Rumbo C., Parreira J. R., Rodríguez-Velo P., Bou G. ( 2010). A rapid and simple method for constructing stable mutants of Acinetobacter baumannii . BMC Microbiol 10:279 [View Article] [PubMed]
    [Google Scholar]
  6. Awaya J. D., Dubois J. L. ( 2008). Identification, isolation, and analysis of a gene cluster involved in iron acquisition by Pseudomonas mendocina ymp. Biometals 21:353–366 [View Article] [PubMed]
    [Google Scholar]
  7. Bagg A., Neilands J. B. ( 1987). Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli . Biochemistry 26:5471–5477 [View Article] [PubMed]
    [Google Scholar]
  8. Bergogne-Bérézin E., Towner K. J. ( 1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165 [PubMed]
    [Google Scholar]
  9. Braun V., Hantke K., Köster W. ( 1998). Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145 [PubMed]
    [Google Scholar]
  10. Brickman T. J., Armstrong S. K. ( 2005). Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J Bacteriol 187:3650–3661 [View Article] [PubMed]
    [Google Scholar]
  11. Bullen J. J., Rogers H. J., Spalding P. B., Ward C. G. ( 2005). Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43:325–330 [View Article] [PubMed]
    [Google Scholar]
  12. Calderwood S. B., Mekalanos J. J. ( 1988). Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170:1015–1017 [PubMed]
    [Google Scholar]
  13. Chatfield C. H., Mulhern B. J., Viswanathan V. K., Cianciotto N. P. ( 2012). The major facilitator superfamily-type protein LbtC promotes the utilization of the legiobactin siderophore by Legionella pneumophila . Microbiology 158:721–735 [View Article] [PubMed]
    [Google Scholar]
  14. Cuív P. Ó., Clarke P., Lynch D., O’Connell M. ( 2004). Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005 [View Article] [PubMed]
    [Google Scholar]
  15. de Lorenzo V., Wee S., Herrero M., Neilands J. B. ( 1987). Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630 [PubMed]
    [Google Scholar]
  16. Eijkelkamp B. A., Hassan K. A., Paulsen I. T., Brown M. H. ( 2011). Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics 12:126 [View Article] [PubMed]
    [Google Scholar]
  17. Escolar L., Pérez-Martín J., de Lorenzo V. ( 1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229 [PubMed]
    [Google Scholar]
  18. Furrer J. L., Sanders D. N., Hook-Barnard I. G., McIntosh M. A. ( 2002). Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234 [View Article] [PubMed]
    [Google Scholar]
  19. Gomez J. E., Bishai W. R. ( 2000). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97:8554–8559 [View Article] [PubMed]
    [Google Scholar]
  20. Heckman K. L., Pease L. R. ( 2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932 [View Article] [PubMed]
    [Google Scholar]
  21. Hider R. C., Kong X. ( 2010). Chemistry and biology of siderophores. Nat Prod Rep 27:637–657 [View Article] [PubMed]
    [Google Scholar]
  22. Ikai H., Yamamoto S. ( 1997). Identification and analysis of a gene encoding l-2,4-diaminobutyrate : 2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii . J Bacteriol 179:5118–5125 [PubMed]
    [Google Scholar]
  23. Ito Y., Butler A. ( 2005). Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923 [View Article]
    [Google Scholar]
  24. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. ( 1988). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [View Article] [PubMed]
    [Google Scholar]
  25. Leahy J. G., Jones-Meehan J. M., Colwell R. R. ( 1994). Transformation of Acinetobacter calcoaceticus RAG-1 by electroporation. Can J Microbiol 40:233–236 [View Article]
    [Google Scholar]
  26. Letain T. E., Postle K. ( 1997). TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli . Mol Microbiol 24:271–283 [View Article] [PubMed]
    [Google Scholar]
  27. Lynch D., O’Brien J., Welch T., Clarke P., Cuív P. Ó., Crosa J. H., O’Connell M. ( 2001). Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti . J Bacteriol 183:2576–2585 [View Article] [PubMed]
    [Google Scholar]
  28. Markwell M. A. K., Haas S. M., Bieber L. L., Tolbert N. E. ( 1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210 [View Article] [PubMed]
    [Google Scholar]
  29. Miethke M., Marahiel M. A. ( 2007). Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451 [View Article] [PubMed]
    [Google Scholar]
  30. Mihara K., Tanabe T., Yamakawa Y., Funahashi T., Nakao H., Narimatsu S., Yamamoto S. ( 2004). Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. . Microbiology 150:2587–2597 [View Article] [PubMed]
    [Google Scholar]
  31. Mullis K. B., Pollack J. R., Neilands J. B. ( 1971). Structure of schizokinen, an iron-transport compound from Bacillus megaterium . Biochemistry 10:4894–4898 [View Article] [PubMed]
    [Google Scholar]
  32. Neilands J. B. ( 1981). Microbial iron compounds. Annu Rev Biochem 50:715–731 [View Article] [PubMed]
    [Google Scholar]
  33. Okujo N., Sakakibara Y., Yoshida T., Yamamoto S. ( 1994). Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus . Biometals 7:170–176 [View Article] [PubMed]
    [Google Scholar]
  34. Oves-Costales D., Kadi N., Challis G. L. ( 2009). The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb)436530–6541 [View Article] [PubMed]
    [Google Scholar]
  35. Payne S. M. ( 1994). Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344 [View Article] [PubMed]
    [Google Scholar]
  36. Persmark M., Pittman P., Buyer J. S., Schwyn P. R., Gill P. R., Neilands J. B. ( 1993). Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956 [View Article]
    [Google Scholar]
  37. Poole K., Krebes K., McNally C., Neshat S. ( 1993). Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372 [PubMed]
    [Google Scholar]
  38. Ratledge C., Dover L. G. ( 2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [View Article] [PubMed]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schaible U. E., Kaufmann S. H. ( 2004). Iron and microbial infection. Nat Rev Microbiol 2:946–953 [View Article] [PubMed]
    [Google Scholar]
  41. Schwyn B., Neilands J. B. ( 1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [View Article] [PubMed]
    [Google Scholar]
  42. Skiebe E., de Berardinis V., Morczinek P., Kerrinnes T., Faber F., Lepka D., Hammer B., Zimmermann O., Ziesing S. & other authors ( 2012). Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302:117–128 [View Article] [PubMed]
    [Google Scholar]
  43. Stojiljkovic I., Bäumler A. J., Hantke K. ( 1994). Fur regulon in Gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236:531–545 [View Article] [PubMed]
    [Google Scholar]
  44. Tanabe T., Nakao H., Kuroda T., Tsuchiya T., Yamamoto S. ( 2006). Involvement of the Vibrio parahaemolyticus pvsC gene in export of the siderophore vibrioferrin. Microbiol Immunol 50:871–876 [PubMed]
    [Google Scholar]
  45. Tayabali A. F., Nguyen K. C., Shwed P. S., Crosthwait J., Coleman G., Seligy V. L. ( 2012). Comparison of the virulence potential of Acinetobacter strains from clinical and environmental sources. PLoS ONE 7:e37024 [View Article] [PubMed]
    [Google Scholar]
  46. Tusnády G. E., Simon I. ( 2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850 [View Article] [PubMed]
    [Google Scholar]
  47. Weinberg E. D. ( 2009). Iron availability and infection. Biochim Biophys Acta 1790:600–605 [View Article] [PubMed]
    [Google Scholar]
  48. Wertheimer A. M., Verweij W., Chen Q., Crosa L. M., Nagasawa M., Tolmasky M. E., Actis L. A., Crosa J. H. ( 1999). Characterization of the angR gene of Vibrio anguillarum: essential role in virulence. Infect Immun 67:6496–6509 [PubMed]
    [Google Scholar]
  49. Wuest W. M., Sattely E. S., Walsh C. T. ( 2009). Three siderophores from one bacterial enzymatic assembly line. J Am Chem Soc 131:5056–5057 [View Article] [PubMed]
    [Google Scholar]
  50. Yamamoto S., Okujo N., Sakakibara Y. ( 1994). Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii . Arch Microbiol 162:249–254 [PubMed]
    [Google Scholar]
  51. Yamamoto S., Akiyama T., Okujo N., Matsu-ura S., Shinoda S. ( 1995a). Demonstration of a ferric vibrioferrin-binding protein in the outer membrane of Vibrio parahaemolyticus . Microbiol Immunol 39:759–766 [PubMed] [CrossRef]
    [Google Scholar]
  52. Yamamoto S., Ikai H., Uesugi T., Horie A., Hirai Y. ( 1995b). Occurrence and antigenic heterogeneity of l-2,4-diaminobutyrate decarboxylase in Acinetobacter species. Biol Pharm Bull 18:454–456 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065177-0
Loading
/content/journal/micro/10.1099/mic.0.065177-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error