1887

Abstract

This study aims to define the cellular roles of methionine sulfoxide reductases A and B, evolutionarily highly conserved enzymes able to repair oxidized methionines in proteins. and mutants were exposed to an internal oxidative stress by growing them under aerobic conditions on glycerol. Interestingly, the mutants behave completely differently under these conditions. The mutant is inhibited, whereas the mutant is stimulated in its growth in comparison with the parent strain. Glycerol can be catabolized by either the GlpK or DhaK pathways in . Our results strongly suggest that in the mutant, glycerol is catabolized via the GlpK pathway leading to increased synthesis of HO, which accumulates to concentrations inhibitory to growth in comparison with the parent strain. In contrast in the mutant, glycerol is metabolized via the DhaK pathway which is not accompanied by the synthesis of HO. The molecular basis for the differences in glycerol flux seems to be due to expression differences of the two glycerol-catabolic operons in the mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065037-0
2013-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/615.html?itemId=/content/journal/micro/10.1099/mic.0.065037-0&mimeType=html&fmt=ahah

References

  1. Bächler C., Schneider P., Bähler P., Lustig A., Erni B..( 2005;). Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J24:283–293 [CrossRef][PubMed]
    [Google Scholar]
  2. Benachour A., Auffray Y., Hartke A..( 2007;). Construction of plasmid vectors for screening replicons from Gram-positive bacteria and their use as shuttle cloning vectors. Curr Microbiol54:342–347 [CrossRef][PubMed]
    [Google Scholar]
  3. Bizzini A., Zhao C., Budin-Verneuil A., Sauvageot N., Giard J. C., Auffray Y., Hartke A..( 2010;). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol192:779–785 [CrossRef][PubMed]
    [Google Scholar]
  4. Boschi-Muller S., Olry A., Antoine M., Branlant G..( 2005;). The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta1703:231–238 [CrossRef][PubMed]
    [Google Scholar]
  5. Boschi-Muller S., Gand A., Branlant G..( 2008;). The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys474:266–273 [CrossRef][PubMed]
    [Google Scholar]
  6. Deutscher J., Francke C., Postma P. W..( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  7. Ezraty B., Grimaud R., El Hassouni M., Moinier D., Barras F..( 2004;). Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J23:1868–1877 [CrossRef][PubMed]
    [Google Scholar]
  8. Imlay J. A..( 2008;). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem77:755–776 [CrossRef][PubMed]
    [Google Scholar]
  9. La Carbona S., Sauvageot N., Giard J. C., Benachour A., Posteraro B., Auffray Y., Sanguinetti M., Hartke A..( 2007;). Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol66:1148–1163 [CrossRef][PubMed]
    [Google Scholar]
  10. Leboeuf C., Leblanc L., Auffray Y., Hartke A..( 2000;). Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. J Bacteriol182:5799–5806 [CrossRef][PubMed]
    [Google Scholar]
  11. Riboulet-Bisson E., Sanguinetti M., Budin-Verneuil A., Auffray Y., Hartke A., Giard J. C..( 2008;). Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun76:3064–3074 [CrossRef][PubMed]
    [Google Scholar]
  12. Riboulet-Bisson E., Hartke A., Auffray Y., Giard J. C..( 2009;). Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol58:201–204 [CrossRef][PubMed]
    [Google Scholar]
  13. Schweizer H., Boos W., Larson T. J..( 1985;). Repressor for the sn-glycerol-3-phosphate regulon of Escherichia coli K-12: cloning of the glpR gene and identification of its product. J Bacteriol161:563–566[PubMed]
    [Google Scholar]
  14. Terzaghi B. E., Sandine W. E..( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  15. Weissbach H., Etienne F., Hoshi T., Heinemann S. H., Lowther W. T., Matthews B., St John G., Nathan G., Brot N..( 2002;). Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys397:172–178 [CrossRef][PubMed]
    [Google Scholar]
  16. Yagi Y., Clewell D. B..( 1980;). Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol143:966–970[PubMed]
    [Google Scholar]
  17. Zhao C., Hartke A., La Sorda M., Posteraro B., Laplace J. M., Auffray Y., Sanguinetti M..( 2010;). Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun78:3889–3897 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065037-0
Loading
/content/journal/micro/10.1099/mic.0.065037-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error