1887

Abstract

Previously, we have identified an avirulent mutant carrying a transposon insertion in , a gene homologous to the LPS-transporting protein LptC. However, how the disruption of affects the bacterium–plant interactions and leads to decreased pathogenicity was not known. Here we show that the disruption of leads to pleiotropic defects, including reducing bacterial motility, biofilm formation, root attachment, rough-form LPS production and virulence in tomato and increasing membrane permeability. Disruption of the orthologous present in other strains proves that most of these functions are conserved in the species. In contrast, trans-complementation analyses show that only orthologues from closely related bacteria can rescue the defects of the disruption mutant. These results enable us to propose a function for , and for the clustered genes, in LPS biogenesis, and for the first time, to our knowledge, also a role of a gene from the DUF1239 gene family in bacterial pathogenicity. In addition and notably, the mutant displays a strain-specific phenotype for hypersensitive response (HR), in which the disruption impairs the HR caused by strain Pss190 but not that by strain Pss1308. Consistent with this strain-specific defect, the mutation clearly affects expression of the type III secretion system (T3SS) in Pss190 but not in other strains, suggesting that the HR-deficient phenotype of the mutant in Pss190 is due to impairment of the T3SS and thus has a strain-specific role in the T3SS activity of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064915-0
2013-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1136.html?itemId=/content/journal/micro/10.1099/mic.0.064915-0&mimeType=html&fmt=ahah

References

  1. Bos M. P., Tommassen J.. ( 2011;). The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis.. J Biol Chem 286:, 28688–28696. [CrossRef][PubMed]
    [Google Scholar]
  2. Bos M. P., Robert V., Tommassen J.. ( 2007;). Biogenesis of the Gram-negative bacterial outer membrane. . Annu Rev Microbiol 61:, 191–214. [CrossRef][PubMed]
    [Google Scholar]
  3. Boucher C. A., Barberis P. A., Trigalet A. P., Demery D. A.. ( 1985;). Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. . J Gen Microbiol 131:, 2449–2457.
    [Google Scholar]
  4. Brito B., Aldon D., Barberis P., Boucher C., Genin S.. ( 2002;). A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. . Mol Plant Microbe Interact 15:, 109–119. [CrossRef][PubMed]
    [Google Scholar]
  5. Chng S. S., Gronenberg L. S., Kahne D.. ( 2010;). Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. . Biochemistry 49:, 4565–4567. [CrossRef][PubMed]
    [Google Scholar]
  6. Danhorn T., Fuqua C.. ( 2007;). Biofilm formation by plant-associated bacteria. . Annu Rev Microbiol 61:, 401–422. [CrossRef][PubMed]
    [Google Scholar]
  7. De Feyter R., Yang Y. O., Gabriel D. W.. ( 1993;). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. . Mol Plant Microbe Interact 6:, 225–237. [CrossRef][PubMed]
    [Google Scholar]
  8. Denny T. P.. ( 2006;). Plant pathogenic Ralstonia species. . In Plant-Associated Bacteria, pp. 573–644. Edited by Gnanamanickam S. S... Dordrecht, The Netherlands:: Springer Publishing;. [CrossRef]
    [Google Scholar]
  9. Dow M., Newman M. A., von Roepenack E.. ( 2000;). The induction and modulation of plant defense responses by bacterial lipopolysaccharides. . Annu Rev Phytopathol 38:, 241–261. [CrossRef][PubMed]
    [Google Scholar]
  10. Genin S.. ( 2010;). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum.. New Phytol 187:, 920–928. [CrossRef][PubMed]
    [Google Scholar]
  11. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef][PubMed]
    [Google Scholar]
  12. Hayward A. C.. ( 1991;). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.. Annu Rev Phytopathol 29:, 65–87. [CrossRef][PubMed]
    [Google Scholar]
  13. Hendrick C. A., Sequeira L.. ( 1984;). Lipopolysaccharide defective mutants of the wilt pathogen Pseudomonas solanacearum.. Appl Environ Microbiol 48:, 94–101.[PubMed]
    [Google Scholar]
  14. Hsieh C. Y., Wang J. F., Huang P. C., Lu D. K., Lin Y. M., Yang W. C., Cheng C. P.. ( 2012;). Ralstonia solanacearum nlpD (RSc1206) contributes to host adaptation. . Eur J Plant Pathol 133:, 645–656. [CrossRef]
    [Google Scholar]
  15. Jaunet T. X., Wang J. F.. ( 1999;). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. . Phytopathology 89:, 320–327. [CrossRef][PubMed]
    [Google Scholar]
  16. Jofré E., Lagares A., Mori G.. ( 2004;). Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense.. FEMS Microbiol Lett 231:, 267–275. [CrossRef][PubMed]
    [Google Scholar]
  17. Kang Y., Liu H., Genin S., Schell M. A., Denny T. P.. ( 2002;). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. . Mol Microbiol 46:, 427–437. [CrossRef][PubMed]
    [Google Scholar]
  18. Lin Y. M., Chou I. C., Wang J. F., Ho F. I., Chu Y. J., Huang P. C., Lu D. K., Shen H. L., Elbaz M.. & other authors ( 2008;). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.. Mol Plant Microbe Interact 21:, 1261–1270. [CrossRef][PubMed]
    [Google Scholar]
  19. Liu H., Zhang S., Schell M. A., Denny T. P.. ( 2005;). Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. . Mol Plant Microbe Interact 18:, 1296–1305. [CrossRef][PubMed]
    [Google Scholar]
  20. Martínez de Tejada G., Pizarro-Cerdá J., Moreno E., Moriyón I.. ( 1995;). The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. . Infect Immun 63:, 3054–3061.[PubMed]
    [Google Scholar]
  21. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  22. Nesper J., Lauriano C. M., Klose K. E., Kapfhammer D., Kraiß A., Reidl J.. ( 2001;). Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. . Infect Immun 69:, 435–445. [CrossRef][PubMed]
    [Google Scholar]
  23. Newman M. A., Dow J. M., Molinaro A., Parrilli M.. ( 2007;). Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. . J Endotoxin Res 13:, 69–84. [CrossRef][PubMed]
    [Google Scholar]
  24. Ormeño-Orrillo E., Rosenblueth M., Luyten E., Vanderleyden J., Martínez-Romero E.. ( 2008;). Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. . Environ Microbiol 10:, 1271–1284. [CrossRef][PubMed]
    [Google Scholar]
  25. Plener L., Manfredi P., Valls M., Genin S.. ( 2010;). PrhG, a transcriptional regulator responding to growth conditions, is involved in the control of the type III secretion system regulon in Ralstonia solanacearum.. J Bacteriol 192:, 1011–1019. [CrossRef][PubMed]
    [Google Scholar]
  26. Poueymiro M., Genin S.. ( 2009;). Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. . Curr Opin Microbiol 12:, 44–52. [CrossRef][PubMed]
    [Google Scholar]
  27. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. . Annu Rev Biochem 71:, 635–700. [CrossRef][PubMed]
    [Google Scholar]
  28. Ruiz N., Gronenberg L. S., Kahne D., Silhavy T. J.. ( 2008;). Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.. Proc Natl Acad Sci U S A 105:, 5537–5542. [CrossRef][PubMed]
    [Google Scholar]
  29. Schägger H.. ( 2006;). Tricine-SDS-PAGE. . Nat Protoc 1:, 16–22. [CrossRef][PubMed]
    [Google Scholar]
  30. Sperandeo P., Cescutti R., Villa R., Di Benedetto C., Candia D., Dehò G., Polissi A.. ( 2007;). Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli.. J Bacteriol 189:, 244–253. [CrossRef][PubMed]
    [Google Scholar]
  31. Sperandeo P., Lau F. K., Carpentieri A., De Castro C., Molinaro A., Dehò G., Silhavy T. J., Polissi A.. ( 2008;). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli.. J Bacteriol 190:, 4460–4469. [CrossRef][PubMed]
    [Google Scholar]
  32. Sperandeo P., Villa R., Martorana A. M., Samalikova M., Grandori R., Dehò G., Polissi A.. ( 2011;). New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA–LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. . J Bacteriol 193:, 1042–1053. [CrossRef][PubMed]
    [Google Scholar]
  33. Tans-Kersten J., Huang H. Y., Allen C.. ( 2001;). Ralstonia solanacearum needs motility for invasive virulence on tomato. . J Bacteriol 183:, 3597–3605. [CrossRef][PubMed]
    [Google Scholar]
  34. Tans-Kersten J., Brown D., Allen C.. ( 2004;). Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. . Mol Plant Microbe Interact 17:, 686–695. [CrossRef][PubMed]
    [Google Scholar]
  35. Titarenko E., López-Solanilla E., García-Olmedo F., Rodríguez-Palenzuela P.. ( 1997;). Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco. . J Bacteriol 179:, 6699–6704.[PubMed]
    [Google Scholar]
  36. Tran A. X., Dong C., Whitfield C.. ( 2010;). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli.. J Biol Chem 285:, 33529–33539. [CrossRef][PubMed]
    [Google Scholar]
  37. Tsai C. M., Frasch C. E.. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. . Anal Biochem 119:, 115–119. [CrossRef][PubMed]
    [Google Scholar]
  38. Valls M., Atrian S., de Lorenzo V., Fernández L. A.. ( 2000;). Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. . Nat Biotechnol 18:, 661–665. [CrossRef][PubMed]
    [Google Scholar]
  39. Valls M., Genin S., Boucher C.. ( 2006;). Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum.. PLoS Pathog 2:, e82. [CrossRef][PubMed]
    [Google Scholar]
  40. Van Gijsegem F., Vasse J., Camus J. C., Marenda M., Boucher C.. ( 2000;). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. . Mol Microbiol 36:, 249–260. [CrossRef][PubMed]
    [Google Scholar]
  41. Vasse J., Genin S., Frey P., Boucher C., Brito B.. ( 2000;). The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. . Mol Plant Microbe Interact 13:, 259–267. [CrossRef][PubMed]
    [Google Scholar]
  42. von Bodman S. B., Bauer W. D., Coplin D. L.. ( 2003;). Quorum sensing in plant-pathogenic bacteria. . Annu Rev Phytopathol 41:, 455–482. [CrossRef][PubMed]
    [Google Scholar]
  43. Wang X., Quinn P. J.. ( 2010;). Endotoxins: lipopolysaccharides of Gram-negative bacteria. . Subcell Biochem 53:, 3–25. [CrossRef][PubMed]
    [Google Scholar]
  44. West N. P., Sansonetti P., Mounier J., Exley R. M., Parsot C., Guadagnini S., Prévost M. C., Prochnicka-Chalufour A., Delepierre M.. & other authors ( 2005;). Optimization of virulence functions through glucosylation of Shigella LPS. . Science 307:, 1313–1317. [CrossRef][PubMed]
    [Google Scholar]
  45. Whatley M. H., Hunter N., Cantrell M. A., Hendrick C., Keegstra K., Sequeira L.. ( 1980;). Lipopolysaccharide composition of the wilt pathogen, Pseudomonas solanacearum: correlation with the hypersensitive response in tobacco. . Plant Physiol 65:, 557–559. [CrossRef][PubMed]
    [Google Scholar]
  46. Yoshimochi T., Hikichi Y., Kiba A., Ohnishi K.. ( 2009;). The global virulence regulator PhcA negatively controls the Ralstonia solanacearum hrp regulatory cascade by repressing expression of the PrhIR signaling proteins. . J Bacteriol 191:, 3424–3428. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064915-0
Loading
/content/journal/micro/10.1099/mic.0.064915-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error