1887

Abstract

Previously, we have identified an avirulent mutant carrying a transposon insertion in , a gene homologous to the LPS-transporting protein LptC. However, how the disruption of affects the bacterium–plant interactions and leads to decreased pathogenicity was not known. Here we show that the disruption of leads to pleiotropic defects, including reducing bacterial motility, biofilm formation, root attachment, rough-form LPS production and virulence in tomato and increasing membrane permeability. Disruption of the orthologous present in other strains proves that most of these functions are conserved in the species. In contrast, trans-complementation analyses show that only orthologues from closely related bacteria can rescue the defects of the disruption mutant. These results enable us to propose a function for , and for the clustered genes, in LPS biogenesis, and for the first time, to our knowledge, also a role of a gene from the DUF1239 gene family in bacterial pathogenicity. In addition and notably, the mutant displays a strain-specific phenotype for hypersensitive response (HR), in which the disruption impairs the HR caused by strain Pss190 but not that by strain Pss1308. Consistent with this strain-specific defect, the mutation clearly affects expression of the type III secretion system (T3SS) in Pss190 but not in other strains, suggesting that the HR-deficient phenotype of the mutant in Pss190 is due to impairment of the T3SS and thus has a strain-specific role in the T3SS activity of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064915-0
2013-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1136.html?itemId=/content/journal/micro/10.1099/mic.0.064915-0&mimeType=html&fmt=ahah

References

  1. Bos M. P., Tommassen J.( 2011). The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis.. J Biol Chem 286:28688–28696 [View Article][PubMed]
    [Google Scholar]
  2. Bos M. P., Robert V., Tommassen J.( 2007). Biogenesis of the Gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214 [View Article][PubMed]
    [Google Scholar]
  3. Boucher C. A., Barberis P. A., Trigalet A. P., Demery D. A.( 1985). Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J Gen Microbiol 131:2449–2457
    [Google Scholar]
  4. Brito B., Aldon D., Barberis P., Boucher C., Genin S.( 2002). A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol Plant Microbe Interact 15:109–119 [View Article][PubMed]
    [Google Scholar]
  5. Chng S. S., Gronenberg L. S., Kahne D.( 2010). Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 49:4565–4567 [View Article][PubMed]
    [Google Scholar]
  6. Danhorn T., Fuqua C.( 2007). Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422 [View Article][PubMed]
    [Google Scholar]
  7. De Feyter R., Yang Y. O., Gabriel D. W.( 1993). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact 6:225–237 [View Article][PubMed]
    [Google Scholar]
  8. Denny T. P.( 2006). Plant pathogenic Ralstonia species. Plant-Associated Bacteria573–644 Gnanamanickam S. S. Dordrecht, The Netherlands: Springer Publishing; [View Article]
    [Google Scholar]
  9. Dow M., Newman M. A., von Roepenack E.( 2000). The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261 [View Article][PubMed]
    [Google Scholar]
  10. Genin S.( 2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum.. New Phytol 187:920–928 [View Article][PubMed]
    [Google Scholar]
  11. Hanahan D.( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  12. Hayward A. C.( 1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.. Annu Rev Phytopathol 29:65–87 [View Article][PubMed]
    [Google Scholar]
  13. Hendrick C. A., Sequeira L.( 1984). Lipopolysaccharide defective mutants of the wilt pathogen Pseudomonas solanacearum.. Appl Environ Microbiol 48:94–101[PubMed]
    [Google Scholar]
  14. Hsieh C. Y., Wang J. F., Huang P. C., Lu D. K., Lin Y. M., Yang W. C., Cheng C. P.( 2012). Ralstonia solanacearum nlpD (RSc1206) contributes to host adaptation. Eur J Plant Pathol 133:645–656 [View Article]
    [Google Scholar]
  15. Jaunet T. X., Wang J. F.( 1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327 [View Article][PubMed]
    [Google Scholar]
  16. Jofré E., Lagares A., Mori G.( 2004). Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense.. FEMS Microbiol Lett 231:267–275 [View Article][PubMed]
    [Google Scholar]
  17. Kang Y., Liu H., Genin S., Schell M. A., Denny T. P.( 2002). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437 [View Article][PubMed]
    [Google Scholar]
  18. Lin Y. M., Chou I. C., Wang J. F., Ho F. I., Chu Y. J., Huang P. C., Lu D. K., Shen H. L., Elbaz M.& other authors ( 2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.. Mol Plant Microbe Interact 21:1261–1270 [View Article][PubMed]
    [Google Scholar]
  19. Liu H., Zhang S., Schell M. A., Denny T. P.( 2005). Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant Microbe Interact 18:1296–1305 [View Article][PubMed]
    [Google Scholar]
  20. Martínez de Tejada G., Pizarro-Cerdá J., Moreno E., Moriyón I.( 1995). The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun 63:3054–3061[PubMed]
    [Google Scholar]
  21. Miller J. H.( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Nesper J., Lauriano C. M., Klose K. E., Kapfhammer D., Kraiß A., Reidl J.( 2001). Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69:435–445 [View Article][PubMed]
    [Google Scholar]
  23. Newman M. A., Dow J. M., Molinaro A., Parrilli M.( 2007). Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13:69–84 [View Article][PubMed]
    [Google Scholar]
  24. Ormeño-Orrillo E., Rosenblueth M., Luyten E., Vanderleyden J., Martínez-Romero E.( 2008). Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 10:1271–1284 [View Article][PubMed]
    [Google Scholar]
  25. Plener L., Manfredi P., Valls M., Genin S.( 2010). PrhG, a transcriptional regulator responding to growth conditions, is involved in the control of the type III secretion system regulon in Ralstonia solanacearum.. J Bacteriol 192:1011–1019 [View Article][PubMed]
    [Google Scholar]
  26. Poueymiro M., Genin S.( 2009). Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12:44–52 [View Article][PubMed]
    [Google Scholar]
  27. Raetz C. R., Whitfield C.( 2002). Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [View Article][PubMed]
    [Google Scholar]
  28. Ruiz N., Gronenberg L. S., Kahne D., Silhavy T. J.( 2008). Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.. Proc Natl Acad Sci U S A 105:5537–5542 [View Article][PubMed]
    [Google Scholar]
  29. Schägger H.( 2006). Tricine-SDS-PAGE. Nat Protoc 1:16–22 [View Article][PubMed]
    [Google Scholar]
  30. Sperandeo P., Cescutti R., Villa R., Di Benedetto C., Candia D., Dehò G., Polissi A.( 2007). Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli.. J Bacteriol 189:244–253 [View Article][PubMed]
    [Google Scholar]
  31. Sperandeo P., Lau F. K., Carpentieri A., De Castro C., Molinaro A., Dehò G., Silhavy T. J., Polissi A.( 2008). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli.. J Bacteriol 190:4460–4469 [View Article][PubMed]
    [Google Scholar]
  32. Sperandeo P., Villa R., Martorana A. M., Samalikova M., Grandori R., Dehò G., Polissi A.( 2011). New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA–LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J Bacteriol 193:1042–1053 [View Article][PubMed]
    [Google Scholar]
  33. Tans-Kersten J., Huang H. Y., Allen C.( 2001). Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605 [View Article][PubMed]
    [Google Scholar]
  34. Tans-Kersten J., Brown D., Allen C.( 2004). Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant Microbe Interact 17:686–695 [View Article][PubMed]
    [Google Scholar]
  35. Titarenko E., López-Solanilla E., García-Olmedo F., Rodríguez-Palenzuela P.( 1997). Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco. J Bacteriol 179:6699–6704[PubMed]
    [Google Scholar]
  36. Tran A. X., Dong C., Whitfield C.( 2010). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli.. J Biol Chem 285:33529–33539 [View Article][PubMed]
    [Google Scholar]
  37. Tsai C. M., Frasch C. E.( 1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [View Article][PubMed]
    [Google Scholar]
  38. Valls M., Atrian S., de Lorenzo V., Fernández L. A.( 2000). Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665 [View Article][PubMed]
    [Google Scholar]
  39. Valls M., Genin S., Boucher C.( 2006). Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum.. PLoS Pathog 2:e82 [View Article][PubMed]
    [Google Scholar]
  40. Van Gijsegem F., Vasse J., Camus J. C., Marenda M., Boucher C.( 2000). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol Microbiol 36:249–260 [View Article][PubMed]
    [Google Scholar]
  41. Vasse J., Genin S., Frey P., Boucher C., Brito B.( 2000). The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol Plant Microbe Interact 13:259–267 [View Article][PubMed]
    [Google Scholar]
  42. von Bodman S. B., Bauer W. D., Coplin D. L.( 2003). Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482 [View Article][PubMed]
    [Google Scholar]
  43. Wang X., Quinn P. J.( 2010). Endotoxins: lipopolysaccharides of Gram-negative bacteria. Subcell Biochem 53:3–25 [View Article][PubMed]
    [Google Scholar]
  44. West N. P., Sansonetti P., Mounier J., Exley R. M., Parsot C., Guadagnini S., Prévost M. C., Prochnicka-Chalufour A., Delepierre M.& other authors ( 2005). Optimization of virulence functions through glucosylation of Shigella LPS. Science 307:1313–1317 [View Article][PubMed]
    [Google Scholar]
  45. Whatley M. H., Hunter N., Cantrell M. A., Hendrick C., Keegstra K., Sequeira L.( 1980). Lipopolysaccharide composition of the wilt pathogen, Pseudomonas solanacearum: correlation with the hypersensitive response in tobacco. Plant Physiol 65:557–559 [View Article][PubMed]
    [Google Scholar]
  46. Yoshimochi T., Hikichi Y., Kiba A., Ohnishi K.( 2009). The global virulence regulator PhcA negatively controls the Ralstonia solanacearum hrp regulatory cascade by repressing expression of the PrhIR signaling proteins. J Bacteriol 191:3424–3428 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064915-0
Loading
/content/journal/micro/10.1099/mic.0.064915-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error