1887

Abstract

, a member of the complex (Bcc), is an important pathogen of the cystic fibrosis (CF) lung. Mannitol, approved as an inhaled osmolyte therapy for use in CF patients, promotes exopolysaccharide (EPS) production by the Bcc. In the present study, we investigated the role of mannitol-induced EPS in the adherence of . We report that mannitol promoted adherence of two representative strains. However, whilst this enhanced adherence was largely EPS-dependent in an environmental isolate, it was EPS-independent within a CF outbreak strain, suggesting strain-to-strain variation in adhesins. Genome sequencing of the outbreak strain enabled the identification of two distinct loci encoding putative fimbrial and afimbrial adhesins. The putative fimbriae-encoding locus was found to be widely distributed amongst clinical and environmental . In contrast, the locus encoding the putative afimbrial adhesin (of the filamentous haemagglutinin family, FHA) was restricted to clinical isolates. Both loci contributed to biofilm formation and mucin adherence. Furthermore, we report that mannitol promoted expression of both loci, and that the locus encoding the putative FHA-family adhesin is a key determinant of the enhanced adherence observed following growth in mannitol. Our studies provide the first characterization, to our knowledge, of adhesins, and in so doing highlight the strain-dependent role of EPS in the Bcc and the difficulties in assigning phenotypic traits to Bcc EPS due to the wider response to mannitol. Our observations also highlight the need to monitor the microbiological effects of inhaled mannitol therapy in Bcc-infected CF patients.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064832-0
2013-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/771.html?itemId=/content/journal/micro/10.1099/mic.0.064832-0&mimeType=html&fmt=ahah

References

  1. Acord J., Maskell J., Sefton A.. ( 2005;). A rapid microplate method for quantifying inhibition of bacterial adhesion to eukaryotic cells. . J Microbiol Methods 60:, 55–62. [CrossRef][PubMed]
    [Google Scholar]
  2. Ammendolia M. G., Bertuccini L., Iosi F., Minelli F., Berlutti F., Valenti P., Superti F.. ( 2010;). Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia. . Biometals 23:, 531–542. [CrossRef][PubMed]
    [Google Scholar]
  3. Balder R., Lipski S., Lazarus J. J., Grose W., Wooten R. M., Hogan R. J., Woods D. E., Lafontaine E. R.. ( 2010;). Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells. . BMC Microbiol 10:, 250. [CrossRef][PubMed]
    [Google Scholar]
  4. Baldwin A., Mahenthiralingam E., Thickett K. M., Honeybourne D., Maiden M. C., Govan J. R., Speert D. P., Lipuma J. J., Vandamme P., Dowson C. G.. ( 2005;). Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. . J Clin Microbiol 43:, 4665–4673. [CrossRef][PubMed]
    [Google Scholar]
  5. Baldwin A., Mahenthiralingam E., Drevinek P., Pope C., Waine D. J., Henry D. A., Speert D. P., Carter P., Vandamme P.. & other authors ( 2008;). Elucidating global epidemiology of Burkholderia multivorans in cases of cystic fibrosis by multilocus sequence typing. . J Clin Microbiol 46:, 290–295. [CrossRef][PubMed]
    [Google Scholar]
  6. Bartholdson S. J., Brown A. R., Mewburn B. R., Clarke D. J., Fry S. C., Campopiano D. J., Govan J. R.. ( 2008;). Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex. . Microbiology 154:, 2513–2521. [CrossRef][PubMed]
    [Google Scholar]
  7. Bilton D., Robinson P., Cooper P., Gallagher C. G., Kolbe J., Fox H., Jaques A., Charlton B..CF301 Study Investigators ( 2011;). Inhaled dry powder mannitol in cystic fibrosis: an efficacy and safety study. . Eur Respir J 38:, 1071–1080. [CrossRef][PubMed]
    [Google Scholar]
  8. Brisse S., Cordevant C., Vandamme P., Bidet P., Loukil C., Chabanon G., Lange M., Bingen E.. ( 2004;). Species distribution and ribotype diversity of Burkholderia cepacia complex isolates from French patients with cystic fibrosis. . J Clin Microbiol 42:, 4824–4827. [CrossRef][PubMed]
    [Google Scholar]
  9. Bylund J., Burgess L. A., Cescutti P., Ernst R. K., Speert D. P.. ( 2006;). Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. . J Biol Chem 281:, 2526–2532. [CrossRef][PubMed]
    [Google Scholar]
  10. Clode F. E., Kaufmann M. E., Malnick H., Pitt T. L.. ( 2000;). Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. . J Clin Microbiol 38:, 1763–1766.[PubMed]
    [Google Scholar]
  11. Coenye T., Vandamme P.. ( 2003;). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5:, 719–729. [CrossRef][PubMed]
    [Google Scholar]
  12. Conway B. A., Chu K. K., Bylund J., Altman E., Speert D. P.. ( 2004;). Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. . J Infect Dis 190:, 957–966. [CrossRef][PubMed]
    [Google Scholar]
  13. Cunha M. V., Sousa S. A., Leitão J. H., Moreira L. M., Videira P. A., Sá-Correia I.. ( 2004;). Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. . J Clin Microbiol 42:, 3052–3058. [CrossRef][PubMed]
    [Google Scholar]
  14. Daviskas E., Anderson S. D., Jaques A., Charlton B.. ( 2010;). Inhaled mannitol improves the hydration and surface properties of sputum in patients with cystic fibrosis. . Chest 137:, 861–868. [CrossRef][PubMed]
    [Google Scholar]
  15. Ferreira A. S., Leitão J. H., Silva I. N., Pinheiro P. F., Sousa S. A., Ramos C. G., Moreira L. M.. ( 2010;). Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. . Appl Environ Microbiol 76:, 441–450. [CrossRef][PubMed]
    [Google Scholar]
  16. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci U S A 76:, 1648–1652. [CrossRef][PubMed]
    [Google Scholar]
  17. Flannagan R. S., Aubert D., Kooi C., Sokol P. A., Valvano M. A.. ( 2007;). Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. . Infect Immun 75:, 1679–1689. [CrossRef][PubMed]
    [Google Scholar]
  18. Flannagan R. S., Linn T., Valvano M. A.. ( 2008;). A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. . Environ Microbiol 10:, 1652–1660. [CrossRef][PubMed]
    [Google Scholar]
  19. Govan J. R., Brown A. R., Jones A. M.. ( 2007;). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. . Future Microbiol 2:, 153–164. [CrossRef][PubMed]
    [Google Scholar]
  20. Hodak H., Wohlkönig A., Smet-Nocca C., Drobecq H., Wieruszeski J. M., Sénéchal M., Landrieu I., Locht C., Jamin M., Jacob-Dubuisson F.. ( 2008;). The peptidyl–prolyl isomerase and chaperone Par27 of Bordetella pertussis as the prototype for a new group of parvulins. . J Mol Biol 376:, 414–426. [CrossRef][PubMed]
    [Google Scholar]
  21. Jaques A., Daviskas E., Turton J. A., McKay K., Cooper P., Stirling R. G., Robertson C. F., Bye P. T., Lesouëf P. N.. & other authors ( 2008;). Inhaled mannitol improves lung function in cystic fibrosis. . Chest 133:, 1388–1396. [CrossRef][PubMed]
    [Google Scholar]
  22. Jones A. M., Dodd M. E., Govan J. R., Barcus V., Doherty C. J., Morris J., Webb A. K.. ( 2004;). Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. . Thorax 59:, 948–951. [CrossRef][PubMed]
    [Google Scholar]
  23. Kalish L. A., Waltz D. A., Dovey M., Potter-Bynoe G., McAdam A. J., Lipuma J. J., Gerard C., Goldmann D.. ( 2006;). Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. . Am J Respir Crit Care Med 173:, 421–425. [CrossRef][PubMed]
    [Google Scholar]
  24. Kim J. F., Ham J. H., Bauer D. W., Collmer A., Beer S. V.. ( 1998;). The hrpC and hrpN operons of Erwinia chrysanthemi EC16 are flanked by plcA and homologs of hemolysin/adhesin genes and accompanying activator/transporter genes. . Mol Plant Microbe Interact 11:, 563–567. [CrossRef][PubMed]
    [Google Scholar]
  25. Liou T. G., Adler F. R., Fitzsimmons S. C., Cahill B. C., Hibbs J. R., Marshall B. C.. ( 2001;). Predictive 5-year survivorship model of cystic fibrosis. . Am J Epidemiol 153:, 345–352. [CrossRef][PubMed]
    [Google Scholar]
  26. LiPuma J. J.. ( 2010;). The changing microbial epidemiology in cystic fibrosis. . Clin Microbiol Rev 23:, 299–323. [CrossRef][PubMed]
    [Google Scholar]
  27. Loutet S. A., Valvano M. A.. ( 2010;). A decade of Burkholderia cenocepacia virulence determinant research. . Infect Immun 78:, 4088–4100. [CrossRef][PubMed]
    [Google Scholar]
  28. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. ( 2000;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. . J Clin Microbiol 38:, 910–913.[PubMed]
    [Google Scholar]
  29. Mil-Homens D., Fialho A. M.. ( 2012;). A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. . PLoS ONE 7:, e41747. [CrossRef][PubMed]
    [Google Scholar]
  30. Mil-Homens D., Rocha E. P., Fialho A. M.. ( 2010;). Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. . Microbiology 156:, 1084–1096. [CrossRef][PubMed]
    [Google Scholar]
  31. Nørskov-Lauritsen N., Johansen H. K., Fenger M. G., Nielsen X. C., Pressler T., Olesen H. V., Høiby N.. ( 2010;). Unusual distribution of Burkholderia cepacia complex species in Danish cystic fibrosis clinics may stem from restricted transmission between patients. . J Clin Microbiol 48:, 2981–2983. [CrossRef][PubMed]
    [Google Scholar]
  32. Robinson M., Daviskas E., Eberl S., Baker J., Chan H. K., Anderson S. D., Bye P. T.. ( 1999;). The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. . Eur Respir J 14:, 678–685. [CrossRef][PubMed]
    [Google Scholar]
  33. Rojas C. M., Ham J. H., Deng W. L., Doyle J. J., Collmer A.. ( 2002;). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. . Proc Natl Acad Sci U S A 99:, 13142–13147. [CrossRef][PubMed]
    [Google Scholar]
  34. Sage A., Linker A., Evans D. J., Lessie T. G.. ( 1990;). Hexose phosphate metabolism and exopolysaccharide formation in Pseudomonas cepacia. . Curr Microbiol 20:, 191–198. [CrossRef]
    [Google Scholar]
  35. Sajjan S. U., Forstner J. F.. ( 1992;). Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. . Infect Immun 60:, 1434–1440.[PubMed]
    [Google Scholar]
  36. Seed K. D., Dennis J. J.. ( 2008;). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. . Infect Immun 76:, 1267–1275. [CrossRef][PubMed]
    [Google Scholar]
  37. Sokurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu X. R., Krogfelt K. A., Struve C., Schembri M. A., Hasty D. L.. ( 1998;). Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. . Proc Natl Acad Sci U S A 95:, 8922–8926. [CrossRef][PubMed]
    [Google Scholar]
  38. Teper A., Jaques A., Charlton B.. ( 2011;). Inhaled mannitol in patients with cystic fibrosis: a randomised open-label dose response trial. . J Cyst Fibros 10:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  39. Urban T. A., Goldberg J. B., Forstner J. F., Sajjan U. S.. ( 2005;). Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. . Infect Immun 73:, 5426–5437. [CrossRef][PubMed]
    [Google Scholar]
  40. Varga J. J., Losada L., Zelazny A. M., Brinkac L., Harkins D., Radune D., Hostetler J., Sampaio E. P., Ronning C. M.. & other authors ( 2012;). Draft genome sequence determination for cystic fibrosis and chronic granulomatous disease Burkholderia multivorans isolates. . J Bacteriol 194:, 6356–6357. [CrossRef][PubMed]
    [Google Scholar]
  41. Vial L., Chapalain A., Groleau M. C., Déziel E.. ( 2011;). The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. . Environ Microbiol 13:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  42. Weissman S. J., Chattopadhyay S., Aprikian P., Obata-Yasuoka M., Yarova-Yarovaya Y., Stapleton A., Ba-Thein W., Dykhuizen D., Johnson J. R., Sokurenko E. V.. ( 2006;). Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli. . Mol Microbiol 59:, 975–988. [CrossRef][PubMed]
    [Google Scholar]
  43. Whiteford M. L., Wilkinson J. D., McColl J. H., Conlon F. M., Michie J. R., Evans T. J., Paton J. Y.. ( 1995;). Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. . Thorax 50:, 1194–1198. [CrossRef][PubMed]
    [Google Scholar]
  44. Winsor G. L., Khaira B., Van Rossum T., Lo R., Whiteside M. D., Brinkman F. S.. ( 2008;). The Burkholderia Genome Database: facilitating flexible queries and comparative analyses. . Bioinformatics 24:, 2803–2804. [CrossRef][PubMed]
    [Google Scholar]
  45. Zlosnik J. E., Hird T. J., Fraenkel M. C., Moreira L. M., Henry D. A., Speert D. P.. ( 2008;). Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. . J Clin Microbiol 46:, 1470–1473. [CrossRef][PubMed]
    [Google Scholar]
  46. Zlosnik J. E., Costa P. S., Brant R., Mori P. Y., Hird T. J., Fraenkel M. C., Wilcox P. G., Davidson A. G., Speert D. P.. ( 2011;). Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. . Am J Respir Crit Care Med 183:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064832-0
Loading
/content/journal/micro/10.1099/mic.0.064832-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error