1887

Abstract

The DLP12 lysis cassette (, , /) is required in certain strains for normal curli expression and biofilm development. Tightly controlled regulation of the lysis cassette is of particular importance, since its overexpression causes host cell lysis. analysis revealed a putative intrinsic transcriptional terminator 100 bp upstream of and within 2000 bp of (), a putative lambda (λ) Q-like antiterminator. We hypothesized that may be required for effective expression of the lysis cassette. In this work we report on the role of as a positive regulator of DLP12 lysis cassette expression. Mutants lacking exhibited a biofilm-defective phenotype analogous to that of the lysis cassette knockouts. This defect occurred through the downregulation of curli transcription, which is also consistent with that seen in the lysis cassette mutants and was restored by complementation by ectopic expression of . In addition, overexpression caused cell lysis, as demonstrated by leakage of βgalactosidase activity from cells. This was accompanied by upregulation of the DLP12 lysis cassette as demonstrated by increased transcription, which was documented with -reporter assays, RT-PCR and chromatin immunoprecipitation (ChIP). We provide evidence that this Q-mediated effect resulted from direct interaction of Q with the lysis cassette promoter (), as demonstrated by electrophoretic gel mobility shift assay (EMSA). We propose that encodes a functional transcriptional regulator, which promotes expression of the DLP12 lysis cassette. This work provides evidence of a regulator from a defective prophage affecting host cell physiology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064741-0
2013-04-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/691.html?itemId=/content/journal/micro/10.1099/mic.0.064741-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S.. ( 1998;). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. . Appl Environ Microbiol 64:, 2240–2246.[PubMed]
    [Google Scholar]
  2. Bailey M. J., Hughes C., Koronakis V.. ( 1997;). RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. . Mol Microbiol 26:, 845–851. [CrossRef][PubMed]
    [Google Scholar]
  3. Barondess J. J., Beckwith J.. ( 1995;). bor gene of phage λ, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. . J Bacteriol 177:, 1247–1253.[PubMed]
    [Google Scholar]
  4. Barrios A. F., Zuo R., Ren D., Wood T. K.. ( 2006;). Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. . Biotechnol Bioeng 93:, 188–200. [CrossRef][PubMed]
    [Google Scholar]
  5. Berry J., Summer E. J., Struck D. K., Young R.. ( 2008;). The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. . Mol Microbiol 70:, 341–351. [CrossRef][PubMed]
    [Google Scholar]
  6. Boehm A., Vogel J.. ( 2012;). The csgD mRNA as a hub for signal integration via multiple small RNAs. . Mol Microbiol 84:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  7. Canchaya C., Proux C., Fournous G., Bruttin A., Brüssow H.. ( 2003;). Prophage genomics. . Microbiol Mol Biol Rev 67:, 238–276. [CrossRef][PubMed]
    [Google Scholar]
  8. Casjens S.. ( 2003;). Prophages and bacterial genomics: what have we learned so far?. Mol Microbiol 49:, 277–300. [CrossRef][PubMed]
    [Google Scholar]
  9. Chikova A. K., Schaaper R. M.. ( 2006;). Mutator and antimutator effects of the bacteriophage P1 hot gene product. . J Bacteriol 188:, 5831–5838. [CrossRef][PubMed]
    [Google Scholar]
  10. Choi K. H., Schweizer H. P.. ( 2005;). An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. . BMC Microbiol 5:, 30. [CrossRef][PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  12. Deighan P., Hochschild A.. ( 2007;). The bacteriophage λQ anti-terminator protein regulates late gene expression as a stable component of the transcription elongation complex. . Mol Microbiol 63:, 911–920. [CrossRef][PubMed]
    [Google Scholar]
  13. Fink R. C., Black E. P., Hou Z., Sugawara M., Sadowsky M. J., Diez-Gonzalez F.. ( 2012;). Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. . Appl Environ Microbiol 78:, 1752–1764. [CrossRef][PubMed]
    [Google Scholar]
  14. Genevaux P., Muller S., Bauda P.. ( 1996;). A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. . FEMS Microbiol Lett 142:, 27–30. [CrossRef][PubMed]
    [Google Scholar]
  15. Guo J. S., Roberts J. W.. ( 2004;). DNA binding regions of Q proteins of phages λ and ϕ80. . J Bacteriol 186:, 3599–3608. [CrossRef][PubMed]
    [Google Scholar]
  16. Hagen K. E., Tramp C. A., Altermann E., Welker D. L., Tompkins T. A.. ( 2010;). Sequence analysis of plasmid pIR52-1 from Lactobacillus helveticus R0052 and investigation of its origin of replication. . Plasmid 63:, 108–117. [CrossRef][PubMed]
    [Google Scholar]
  17. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. ( 2000;). Quantification of biofilm structures by the novel computer program COMSTAT. . Microbiology 146:, 2395–2407.[PubMed]
    [Google Scholar]
  18. Holmqvist E., Reimegård J., Sterk M., Grantcharova N., Römling U., Wagner E. G.. ( 2010;). Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. . EMBO J 29:, 1840–1850. [CrossRef][PubMed]
    [Google Scholar]
  19. Huerta A. M., Collado-Vides J.. ( 2003;). Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. . J Mol Biol 333:, 261–278. [CrossRef][PubMed]
    [Google Scholar]
  20. Jørgensen M. G., Nielsen J. S., Boysen A., Franch T., Møller-Jensen J., Valentin-Hansen P.. ( 2012;). Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. . Mol Microbiol 84:, 36–50. [CrossRef][PubMed]
    [Google Scholar]
  21. Karatan E., Watnick P.. ( 2009;). Signals, regulatory networks, and materials that build and break bacterial biofilms. . Microbiol Mol Biol Rev 73:, 310–347. [CrossRef][PubMed]
    [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  23. Lawrence J. G., Ochman H.. ( 1998;). Molecular archaeology of the Escherichia coli genome. . Proc Natl Acad Sci U S A 95:, 9413–9417. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee J. H., Kim Y. G., Cho M. H., Wood T. K., Lee J.. ( 2011;). Transcriptomic analysis for genetic mechanisms of the factors related to biofilm formation in Escherichia coli O157:H7. . Curr Microbiol 62:, 1321–1330. [CrossRef][PubMed]
    [Google Scholar]
  25. Lindsey D. F., Mullin D. A., Walker J. R.. ( 1989;). Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. . J Bacteriol 171:, 6197–6205.[PubMed]
    [Google Scholar]
  26. Mika F., Busse S., Possling A., Berkholz J., Tschowri N., Sommerfeldt N., Pruteanu M., Hengge R.. ( 2012;). Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. . Mol Microbiol 84:, 51–65. [CrossRef][PubMed]
    [Google Scholar]
  27. Nickels B. E., Roberts C. W., Sun H. T., Roberts J. W., Hochschild A.. ( 2002;). The σ70 subunit of RNA polymerase is contacted by the λQ antiterminator during early elongation. . Mol Cell 10:, 611–622. [CrossRef][PubMed]
    [Google Scholar]
  28. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A.. ( 2010;). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. . Microbiology 156:, 2470–2483. [CrossRef][PubMed]
    [Google Scholar]
  29. Ogasawara H., Yamamoto K., Ishihama A.. ( 2011;). Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. . J Bacteriol 193:, 2587–2597. [CrossRef][PubMed]
    [Google Scholar]
  30. Oppenheim A. B., Kobiler O., Stavans J., Court D. L., Adhya S.. ( 2005;). Switches in bacteriophage lambda development. . Annu Rev Genet 39:, 409–429. [CrossRef][PubMed]
    [Google Scholar]
  31. Pal C., Maciá M. D., Oliver A., Schachar I., Buckling A.. ( 2007;). Coevolution with viruses drives the evolution of bacterial mutation rates. . Nature 450:, 1079–1081. [CrossRef][PubMed]
    [Google Scholar]
  32. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R.. ( 2008;). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. . Genes Dev 22:, 2434–2446. [CrossRef][PubMed]
    [Google Scholar]
  33. Rice S. A., Tan C. H., Mikkelsen P. J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J. S., Kjelleberg S.. ( 2009;). The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. . ISME J 3:, 271–282. [CrossRef][PubMed]
    [Google Scholar]
  34. Salazar O., Asenjo J. A.. ( 2007;). Enzymatic lysis of microbial cells. . Biotechnol Lett 29:, 985–994. [CrossRef][PubMed]
    [Google Scholar]
  35. Santangelo T. J., Roberts J. W.. ( 2002;). RfaH, a bacterial transcription antiterminator. . Mol Cell 9:, 698–700. [CrossRef][PubMed]
    [Google Scholar]
  36. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G.. ( 2002;). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. . J Bacteriol 184:, 1140–1154. [CrossRef][PubMed]
    [Google Scholar]
  37. Sheikh J., Hicks S., Dall’Agnol M., Phillips A. D., Nataro J. P.. ( 2001;). Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. . Mol Microbiol 41:, 983–997. [CrossRef][PubMed]
    [Google Scholar]
  38. Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A.. ( 2003;). Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. . J Bacteriol 185:, 1951–1957. [CrossRef][PubMed]
    [Google Scholar]
  39. Stewart P. S., Franklin M. J.. ( 2008;). Physiological heterogeneity in biofilms. . Nat Rev Microbiol 6:, 199–210. [CrossRef][PubMed]
    [Google Scholar]
  40. Stoodley P., Sauer K., Davies D. G., Costerton J. W.. ( 2002;). Biofilms as complex differentiated communities. . Annu Rev Microbiol 56:, 187–209. [CrossRef][PubMed]
    [Google Scholar]
  41. Thomason M. K., Fontaine F., De Lay N., Storz G.. ( 2012;). A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. . Mol Microbiol 84:, 17–35. [CrossRef][PubMed]
    [Google Scholar]
  42. Toba F. A., Thompson M. G., Campbell B. R., Junker L. M., Rueggeberg K. G., Hay A. G.. ( 2011;). Role of DLP12 lysis genes in Escherichia coli biofilm formation. . Microbiology 157:, 1640–1650. [CrossRef][PubMed]
    [Google Scholar]
  43. Vica Pacheco S., García González O., Paniagua Contreras G. L.. ( 1997;). The lom gene of bacteriophage λ is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. . FEMS Microbiol Lett 156:, 129–132. [CrossRef][PubMed]
    [Google Scholar]
  44. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P.. ( 1998;). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. . J Bacteriol 180:, 2442–2449.[PubMed]
    [Google Scholar]
  45. Wang X., Kim Y., Ma Q., Hong S. H., Pokusaeva K., Sturino J. M., Wood T. K.. ( 2010;). Cryptic prophages help bacteria cope with adverse environments. . Nat Commun 1:, 147. [CrossRef][PubMed]
    [Google Scholar]
  46. Webb J. S., Lau M., Kjelleberg S.. ( 2004;). Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. . J Bacteriol 186:, 8066–8073. [CrossRef][PubMed]
    [Google Scholar]
  47. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P.. ( 2001;). Gene expression in Pseudomonas aeruginosa biofilms. . Nature 413:, 860–864. [CrossRef][PubMed]
    [Google Scholar]
  48. Young I., Wang I., Roof W. D.. ( 2000;). Phages will out: strategies of host cell lysis. . Trends Microbiol 8:, 120–128. [CrossRef][PubMed]
    [Google Scholar]
  49. Zhou Y., Shi T., Mozola M. A., Olson E. R., Henthorn K., Brown S., Gussin G. N., Friedman D. I.. ( 2006;). Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites. . J Bacteriol 188:, 2222–2232. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064741-0
Loading
/content/journal/micro/10.1099/mic.0.064741-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error