1887

Abstract

subsp. () develops a biofilm structure both and . Despite all the progress achieved by studies regarding biofilm formation, many of its mechanisms remain poorly understood. This work focuses on the identification of new genes involved in biofilm formation and how they are related to motility, virulence and chemotaxis in . A Tn library of approximately 6000 (strain 306) mutants was generated and screened to search for biofilm formation defective strains. We identified 23 genes not previously associated with biofilm formation. The analysis of the 23 mutants not only revealed the involvement of new genes in biofilm formation, but also reinforced the importance of exopolysaccharide production, motility and cell surface structures in this process. This collection of biofilm-defective mutants underscores the multifactorial genetic programme underlying the establishment of biofilm in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064709-0
2013-09-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1911.html?itemId=/content/journal/micro/10.1099/mic.0.064709-0&mimeType=html&fmt=ahah

References

  1. Alegria M. C., Souza D. P., Andrade M. O., Docena C., Khater L., Ramos C. H. I., da Silva A. C. R., Farah C. S.. ( 2005;). Identification of new protein–protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. . J Bacteriol 187:, 2315–2325. [CrossRef][PubMed]
    [Google Scholar]
  2. Ballering K. S., Kristich C. J., Grindle S. M., Oromendia A., Beattie D. T., Dunny G. M.. ( 2009;). Functional genomics of Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. . J Bacteriol 191:, 2806–2814. [CrossRef][PubMed]
    [Google Scholar]
  3. Baptista J. C., Machado M. A., Homem R. A., Torres P. S., Vojnov A. A., do Amaral A. M.. ( 2010;). Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence. . Genet Mol Biol 33:, 146–153. [CrossRef][PubMed]
    [Google Scholar]
  4. Becker N. A., Kahn J. D., Maher L. J. III. ( 2007;). Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. . Nucleic Acids Res 35:, 3988–4000. [CrossRef][PubMed]
    [Google Scholar]
  5. Brunings A. M., Gabriel D. W.. ( 2003;). Xanthomonas citri: breaking the surface. . Mol Plant Pathol 4:, 141–157. [CrossRef][PubMed]
    [Google Scholar]
  6. Cianciotto N. P.. ( 2005;). Type II secretion: a protein secretion system for all seasons. . Trends Microbiol 13:, 581–588. [CrossRef][PubMed]
    [Google Scholar]
  7. de Weert S., Vermeiren H., Mulders I. H. M., Kuiper I., Hendrickx N., Bloemberg G. V., Vanderleyden J., De Mot R., Lugtenberg B. J. J.. ( 2002;). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. . Mol Plant Microbe Interact 15:, 1173–1180. [CrossRef][PubMed]
    [Google Scholar]
  8. Dunger G., Relling V. M., Tondo M. L., Barreras M., Ielpi L., Orellano E. G., Ottado J.. ( 2007;). Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. . Arch Microbiol 188:, 127–135. [CrossRef][PubMed]
    [Google Scholar]
  9. Feng J.-X., Song Z.-Z., Duan C.-J., Zhao S., Wu Y.-Q., Wang C., Dow J. M., Tang J.-L.. ( 2009;). The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice. . Microbiology 155:, 3033–3044. [CrossRef][PubMed]
    [Google Scholar]
  10. Gottig N., Garavaglia B. S., Garofalo C. G., Orellano E. G., Ottado J.. ( 2009;). A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. . PLoS ONE 4:, e4358. [CrossRef][PubMed]
    [Google Scholar]
  11. Guo Y., Sagaram U. S., Kim J. S., Wang N.. ( 2010;). Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. . Appl Environ Microbiol 76:, 2234–2242. [CrossRef][PubMed]
    [Google Scholar]
  12. Kraiselburd I., Alet A. I., Tondo M. L., Petrocelli S., Daurelio L. D., Monzón J., Ruiz O. A., Losi A., Orellano E. G.. ( 2012;). A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. . PLoS ONE 7:, e38226. [CrossRef][PubMed]
    [Google Scholar]
  13. Li J., Wang N.. ( 2011a;). The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. . Mol Plant Pathol 12:, 381–396. [CrossRef][PubMed]
    [Google Scholar]
  14. Li J., Wang N.. ( 2011b;). Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. . PLoS ONE 6:, e21804. [CrossRef][PubMed]
    [Google Scholar]
  15. Malamud F., Torres P. S., Roeschlin R., Rigano L. A., Enrique R., Bonomi H. R., Castagnaro A. P., Marano M. R., Vojnov A. A.. ( 2011;). The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. . Microbiology 157:, 819–829. [CrossRef][PubMed]
    [Google Scholar]
  16. Malamud F., Conforte V. P., Rigano L. A., Castagnaro A. P., Marano M. R., Morais do Amaral A., Vojnov A. A.. ( 2012;). hrpM is involved in glucan biosynthesis, biofilm formation and pathogenicity in Xanthomonas citri ssp. citri. . Mol Plant Pathol 13:, 1010–1018. [CrossRef][PubMed]
    [Google Scholar]
  17. Merritt P. M., Danhorn T., Fuqua C.. ( 2007;). Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. . J Bacteriol 189:, 8005–8014. [CrossRef][PubMed]
    [Google Scholar]
  18. Monds R. D., O’Toole G. A.. ( 2009;). The developmental model of microbial biofilms: ten years of a paradigm up for review. . Trends Microbiol 17:, 73–87. [CrossRef][PubMed]
    [Google Scholar]
  19. Pratt L. A., Kolter R.. ( 1998;). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. . Mol Microbiol 30:, 285–293. [CrossRef][PubMed]
    [Google Scholar]
  20. Rashid M. H., Kornberg A.. ( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 97:, 4885–4890. [CrossRef][PubMed]
    [Google Scholar]
  21. Rigano L. A., Siciliano F., Enrique R., Sendín L., Filippone P., Torres P. S., Qüesta J., Dow J. M., Castagnaro A. P.. & other authors ( 2007;). Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. . Mol Plant Microbe Interact 20:, 1222–1230. [CrossRef][PubMed]
    [Google Scholar]
  22. Schmidt J., Müsken M., Becker T., Magnowska Z., Bertinetti D., Möller S., Zimmermann B., Herberg F. W., Jänsch L., Häussler S.. ( 2011;). The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. . PLoS ONE 6:, e18184. [CrossRef][PubMed]
    [Google Scholar]
  23. Siciliano F., Torres P., Sendín L., Bermejo C., Filippone P., Vellice G., Ramallo J.. ( 2006;). Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. . Electronic J Biotechnol 9: (3). [CrossRef]
    [Google Scholar]
  24. Stoodley P., Sauer K., Davies D. G., Costerton J. W.. ( 2002;). Biofilms as complex differentiated communities. . Annu Rev Microbiol 56:, 187–209. [CrossRef][PubMed]
    [Google Scholar]
  25. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S.. ( 2000;). Development and dynamics of Pseudomonas sp. biofilms. . J Bacteriol 182:, 6482–6489. [CrossRef][PubMed]
    [Google Scholar]
  26. Walters S., Bélanger M., Rodrigues P. H., Whitlock J., Progulske-Fox A.. ( 2009;). A member of the peptidase M48 superfamily of Porphyromonas gingivalis is associated with virulence in vitro and in vivo. . J Oral Microbiol 1:. [CrossRef][PubMed]
    [Google Scholar]
  27. Yan Q., Wang N.. ( 2011;). The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. . J Bacteriol 193:, 1590–1599. [CrossRef][PubMed]
    [Google Scholar]
  28. Yan Q., Wang N.. ( 2012;). High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. . Mol Plant Microbe Interact 25:, 69–84. [CrossRef][PubMed]
    [Google Scholar]
  29. Yan Q., Hu X., Wang N.. ( 2012;). The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. . Mol Plant Pathol 13:, 923–934. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064709-0
Loading
/content/journal/micro/10.1099/mic.0.064709-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error