1887

Abstract

Continuous updating of the genome sequence of the model of the Firmicutes, is a basic requirement needed by the biology community. In this work new genomic objects have been included (toxin/antitoxin genes and small RNA genes) and the metabolic network has been entirely updated. The curated view of the validated metabolic pathways present in the organism as of 2012 shows several significant differences from pathways present in the other bacterial reference, : variants in synthesis of cofactors (thiamine, biotin, bacillithiol), amino acids (lysine, methionine), branched-chain fatty acids, tRNA modification and RNA degradation. In this new version, gene products that are enzymes or transporters are explicitly linked to the biochemical reactions of the RHEA reaction resource (http://www.ebi.ac.uk/rhea/), while novel compound entries have been created in the database Chemical Entities of Biological Interest (http://www.ebi.ac.uk/chebi/). The newly annotated sequence is deposited at the International Nucleotide Sequence Data Collaboration with accession number AL009126.4.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064691-0
2013-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/757.html?itemId=/content/journal/micro/10.1099/mic.0.064691-0&mimeType=html&fmt=ahah

References

  1. Alcántara R., Axelsen K. B., Morgat A., Belda E., Coudert E., Bridge A., Cao H., de Matos P., Ennis M.. & other authors ( 2012;). Rhea – a manually curated resource of biochemical reactions. . Nucleic Acids Res 40: (Database issue), D754–D760. [CrossRef][PubMed]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J.. ( 1961;). Requirements for transformation in Bacillus subtilis.. J Bacteriol 81:, 741–746.[PubMed]
    [Google Scholar]
  3. Anton B. P., Saleh L., Benner J. S., Raleigh E. A., Kasif S., Roberts R. J.. ( 2008;). RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli.. Proc Natl Acad Sci U S A 105:, 1826–1831. [CrossRef][PubMed]
    [Google Scholar]
  4. Anton B. P., Russell S. P., Vertrees J., Kasif S., Raleigh E. A., Limbach P. A., Roberts R. J.. ( 2010;). Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis.. Nucleic Acids Res 38:, 6195–6205. [CrossRef][PubMed]
    [Google Scholar]
  5. Arragain S., Handelman S. K., Forouhar F., Wei F. Y., Tomizawa K., Hunt J. F., Douki T., Fontecave M., Mulliez E., Atta M.. ( 2010;). Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. . J Biol Chem 285:, 28425–28433. [CrossRef][PubMed]
    [Google Scholar]
  6. Azarkina N., Siletsky S., Borisov V., von Wachenfeldt C., Hederstedt L., Konstantinov A. A.. ( 1999;). A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168. . J Biol Chem 274:, 32810–32817. [CrossRef][PubMed]
    [Google Scholar]
  7. Barbe V., Cruveiller S., Kunst F., Lenoble P., Meurice G., Sekowska A., Vallenet D., Wang T., Moszer I.. & other authors ( 2009;). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. . Microbiology 155:, 1758–1775. [CrossRef][PubMed]
    [Google Scholar]
  8. Beckmann B. M., Hoch P. G., Marz M., Willkomm D. K., Salas M., Hartmann R. K.. ( 2012;). A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis.. EMBO J 31:, 1727–1738. [CrossRef][PubMed]
    [Google Scholar]
  9. Bertani G.. ( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli.. J Bacteriol 62:, 293–300.[PubMed]
    [Google Scholar]
  10. Bocs S., Cruveiller S., Vallenet D., Nuel G., Médigue C.. ( 2003;). AMIGene: annotation of microbial genes. . Nucleic Acids Res 31:, 3723–3726. [CrossRef][PubMed]
    [Google Scholar]
  11. Breaker R. R.. ( 2011;). Prospects for riboswitch discovery and analysis. . Mol Cell 43:, 867–879. [CrossRef][PubMed]
    [Google Scholar]
  12. Bright J. R., Byrom D., Danson M. J., Hough D. W., Towner P.. ( 1993;). Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum.. Eur J Biochem 211:, 549–554. [CrossRef][PubMed]
    [Google Scholar]
  13. Carpousis A. J.. ( 2007;). The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. . Annu Rev Microbiol 61:, 71–87. [CrossRef][PubMed]
    [Google Scholar]
  14. Caspi R., Altman T., Dreher K., Fulcher C. A., Subhraveti P., Keseler I. M., Kothari A., Krummenacker M., Latendresse M.. & other authors ( 2012;). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. . Nucleic Acids Res 40: (Database issue), D742–D753. [CrossRef][PubMed]
    [Google Scholar]
  15. Chen Y., Cao S., Chai Y., Clardy J., Kolter R., Guo J. H., Losick R.. ( 2012;). A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. . Mol Microbiol 85:, 418–430. [CrossRef][PubMed]
    [Google Scholar]
  16. Choi K. H., Heath R. J., Rock C. O.. ( 2000;). β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. . J Bacteriol 182:, 365–370. [CrossRef][PubMed]
    [Google Scholar]
  17. Choudhary D. K., Johri B. N.. ( 2009;). Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). . Microbiol Res 164:, 493–513. [CrossRef][PubMed]
    [Google Scholar]
  18. Christensen Q. H., Martin N., Mansilla M. C., de Mendoza D., Cronan J. E.. ( 2011;). A novel amidotransferase required for lipoic acid cofactor assembly in Bacillus subtilis.. Mol Microbiol 80:, 350–363. [CrossRef][PubMed]
    [Google Scholar]
  19. Claudel-Renard C., Chevalet C., Faraut T., Kahn D.. ( 2003;). Enzyme-specific profiles for genome annotation: PRIAM. . Nucleic Acids Res 31:, 6633–6639. [CrossRef][PubMed]
    [Google Scholar]
  20. Commichau F. M., Rothe F. M., Herzberg C., Wagner E., Hellwig D., Lehnik-Habrink M., Hammer E., Völker U., Stülke J.. ( 2009;). Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. . Mol Cell Proteomics 8:, 1350–1360. [CrossRef][PubMed]
    [Google Scholar]
  21. Danchin A.. ( 2009;). A phylogenetic view of bacterial ribonucleases. . Prog Mol Biol Transl Sci 85:, 1–41. [CrossRef][PubMed]
    [Google Scholar]
  22. de Matos P., Adams N., Hastings J., Moreno P., Steinbeck C.. ( 2012;). A database for chemical proteomics: ChEBI. . Methods Mol Biol 803:, 273–296. [CrossRef][PubMed]
    [Google Scholar]
  23. Debarbouille M., Gardan R., Arnaud M., Rapoport G.. ( 1999;). Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.. J Bacteriol 181:, 2059–2066.[PubMed]
    [Google Scholar]
  24. Deikus G., Bechhofer D. H.. ( 2009;). Bacillus subtilis trp leader RNA: RNase J1 endonuclease cleavage specificity and PNPase processing. . J Biol Chem 284:, 26394–26401. [CrossRef][PubMed]
    [Google Scholar]
  25. Diethmaier C., Pietack N., Gunka K., Wrede C., Lehnik-Habrink M., Herzberg C., Hübner S., Stülke J.. ( 2011;). A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. . J Bacteriol 193:, 5997–6007. [CrossRef][PubMed]
    [Google Scholar]
  26. Dimmer E. C., Huntley R. P., Alam-Faruque Y., Sawford T., O’Donovan C., Martin M. J., Bely B., Browne P., Mun Chan W.. & other authors ( 2012;). The UniProt-GO Annotation database in 2011. . Nucleic Acids Res 40: (Database issue), D565–D570. [CrossRef][PubMed]
    [Google Scholar]
  27. Engelen S., Vallenet D., Médigue C., Danchin A.. ( 2012;). Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. . BMC Genomics 13:, 69. [CrossRef][PubMed]
    [Google Scholar]
  28. Fang M., Zeisberg W. M., Condon C., Ogryzko V., Danchin A., Mechold U.. ( 2009;). Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.. Nucleic Acids Res 37:, 5114–5125. [CrossRef][PubMed]
    [Google Scholar]
  29. Florek P., Levdikov V. M., Blagova E., Lebedev A. A., Škrabana R., Resetárová S., Pavelcíková P., Barak I., Wilkinson A. J.. ( 2011;). The structure and interactions of SpoIISA and SpoIISB, a toxin–antitoxin system in Bacillus subtilis.. J Biol Chem 286:, 6808–6819. [CrossRef][PubMed]
    [Google Scholar]
  30. Fozo E. M., Makarova K. S., Shabalina S. A., Yutin N., Koonin E. V., Storz G.. ( 2010;). Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. . Nucleic Acids Res 38:, 3743–3759. [CrossRef][PubMed]
    [Google Scholar]
  31. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K. B., Smaldone G. T., Helmann J. D.. ( 2008;). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. . Proc Natl Acad Sci U S A 105:, 11927–11932. [CrossRef][PubMed]
    [Google Scholar]
  32. Gaballa A., Newton G. L., Antelmann H., Parsonage D., Upton H., Rawat M., Claiborne A., Fahey R. C., Helmann J. D.. ( 2010;). Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in bacilli. . Proc Natl Acad Sci U S A 107:, 6482–6486. [CrossRef][PubMed]
    [Google Scholar]
  33. Gilks W. R., Audit B., De Angelis D., Tsoka S., Ouzounis C. A.. ( 2002;). Modeling the percolation of annotation errors in a database of protein sequences. . Bioinformatics 18:, 1641–1649. [CrossRef][PubMed]
    [Google Scholar]
  34. Gimpel M., Heidrich N., Mäder U., Krügel H., Brantl S.. ( 2010;). A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. . Mol Microbiol 76:, 990–1009. [CrossRef][PubMed]
    [Google Scholar]
  35. Green M. L., Karp P. D.. ( 2006;). The outcomes of pathway database computations depend on pathway ontology. . Nucleic Acids Res 34:, 3687–3697. [CrossRef][PubMed]
    [Google Scholar]
  36. Green A. J., Rivers S. L., Cheesman M., Reid G. A., Quaroni L. G., Macdonald I. D., Chapman S. K., Munro A. W.. ( 2001;). Expression, purification and characterization of cytochrome P450 Biol: a novel P450 involved in biotin synthesis in Bacillus subtilis.. J Biol Inorg Chem 6:, 523–533. [CrossRef][PubMed]
    [Google Scholar]
  37. Guldan H., Sterner R., Babinger P.. ( 2008;). Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni2+-dependent AraM from Bacillus subtilis.. Biochemistry 47:, 7376–7384. [CrossRef][PubMed]
    [Google Scholar]
  38. Guldan H., Matysik F. M., Bocola M., Sterner R., Babinger P.. ( 2011;). Functional assignment of an enzyme that catalyzes the synthesis of an archaea-type ether lipid in bacteria. . Angew Chem Int Ed Engl 50:, 8188–8191. [CrossRef][PubMed]
    [Google Scholar]
  39. Hayes F., Van Melderen L.. ( 2011;). Toxins–antitoxins: diversity, evolution and function. . Crit Rev Biochem Mol Biol 46:, 386–408. [CrossRef][PubMed]
    [Google Scholar]
  40. Heidrich N., Chinali A., Gerth U., Brantl S.. ( 2006;). The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. . Mol Microbiol 62:, 520–536. [CrossRef][PubMed]
    [Google Scholar]
  41. Henry C. S., Zinner J. F., Cohoon M. P., Stevens R. L.. ( 2009;). iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. . Genome Biol 10:, R69. [CrossRef][PubMed]
    [Google Scholar]
  42. Holberger L. E., Garza-Sánchez F., Lamoureux J., Low D. A., Hayes C. S.. ( 2012;). A novel family of toxin/antitoxin proteins in Bacillus species. . FEBS Lett 586:, 132–136. [CrossRef][PubMed]
    [Google Scholar]
  43. Hsiao T. L., Revelles O., Chen L., Sauer U., Vitkup D.. ( 2010;). Automatic policing of biochemical annotations using genomic correlations. . Nat Chem Biol 6:, 34–40. [CrossRef][PubMed]
    [Google Scholar]
  44. Huang B., Lv C., Zhuang P., Zhang H., Fan L.. ( 2011;). Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. . Plant Biol (Stuttg) 13:, 925–931. [CrossRef][PubMed]
    [Google Scholar]
  45. Hullo M. F., Auger S., Soutourina O., Barzu O., Yvon M., Danchin A., Martin-Verstraete I.. ( 2007;). Conversion of methionine to cysteine in Bacillus subtilis and its regulation. . J Bacteriol 189:, 187–197. [CrossRef][PubMed]
    [Google Scholar]
  46. Hunter S., Jones P., Mitchell A., Apweiler R., Attwood T. K., Bateman A., Bernard T., Binns D., Bork P.. & other authors ( 2012;). InterPro in 2011: new developments in the family and domain prediction database. . Nucleic Acids Res 40: (Database issue), D306–D312. [CrossRef][PubMed]
    [Google Scholar]
  47. Irnov I., Sharma C. M., Vogel J., Winkler W. C.. ( 2010;). Identification of regulatory RNAs in Bacillus subtilis.. Nucleic Acids Res 38:, 6637–6651. [CrossRef][PubMed]
    [Google Scholar]
  48. Jahn N., Preis H., Wiedemann C., Brantl S.. ( 2012;). BsrG/SR4 from Bacillus subtilis – the first temperature-dependent type I toxin-antitoxin system. . Mol Microbiol 83:, 579–598. [CrossRef][PubMed]
    [Google Scholar]
  49. Jensen R. A., d’Amato T. A., Hochstein L. I.. ( 1988;). An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria. . Arch Microbiol 149:, 365–371. [CrossRef][PubMed]
    [Google Scholar]
  50. Kaneda T.. ( 1991;). Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. . Microbiol Rev 55:, 288–302.[PubMed]
    [Google Scholar]
  51. Karp P. D., Latendresse M., Caspi R.. ( 2011;). The pathway tools pathway prediction algorithm. . Stand Genomic Sci 5:, 424–429. [CrossRef][PubMed]
    [Google Scholar]
  52. Karsch-Mizrachi I., Nakamura Y., Cochrane G..International Nucleotide Sequence Database Collaboration ( 2012;). The International Nucleotide Sequence Database Collaboration. . Nucleic Acids Res 40: (Database issue), D33–D37. [CrossRef][PubMed]
    [Google Scholar]
  53. Keseler I. M., Collado-Vides J., Santos-Zavaleta A., Peralta-Gil M., Gama-Castro S., Muñiz-Rascado L., Bonavides-Martinez C., Paley S., Krummenacker M.. & other authors ( 2011;). EcoCyc: a comprehensive database of Escherichia coli biology. . Nucleic Acids Res 39: (Database issue), D583–D590. [CrossRef][PubMed]
    [Google Scholar]
  54. Kodama T., Matsubayashi T., Yanagihara T., Komoto H., Ara K., Ozaki K., Kuwana R., Imamura D., Takamatsu H.. & other authors ( 2011;). A novel small protein of Bacillus subtilis involved in spore germination and spore coat assembly. . Biosci Biotechnol Biochem 75:, 1119–1128. [CrossRef][PubMed]
    [Google Scholar]
  55. Latendresse M., Paley S., Karp P. D.. ( 2012;). Browsing metabolic and regulatory networks with BioCyc. . Methods Mol Biol 804:, 197–216. [CrossRef][PubMed]
    [Google Scholar]
  56. Lauhon C. T.. ( 2012;). Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP. . Biochemistry 51:, 8950–8963. (Epub ahead of print). [CrossRef][PubMed]
    [Google Scholar]
  57. Lehnik-Habrink M., Newman J., Rothe F. M., Solovyova A. S., Rodrigues C., Herzberg C., Commichau F. M., Lewis R. J., Stülke J.. ( 2011;). RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.. J Bacteriol 193:, 5431–5441. [CrossRef][PubMed]
    [Google Scholar]
  58. Lima T., Auchincloss A. H., Coudert E., Keller G., Michoud K., Rivoire C., Bulliard V., de Castro E., Lachaize C.. & other authors ( 2009;). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. . Nucleic Acids Res 37: (Database issue), D471–D478. [CrossRef][PubMed]
    [Google Scholar]
  59. Liu M. F., Cescau S., Mechold U., Wang J., Cohen D., Danchin A., Boulouis H. J., Biville F.. ( 2012;). Identification of a novel nanoRNase in Bartonella. . Microbiology 158:, 886–895. [CrossRef][PubMed]
    [Google Scholar]
  60. Lombard J., López-García P., Moreira D.. ( 2012;). The early evolution of lipid membranes and the three domains of life. . Nat Rev Microbiol 10:, 507–515.[PubMed]
    [Google Scholar]
  61. Mäder U., Zig L., Kretschmer J., Homuth G., Putzer H.. ( 2008;). mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale. . Mol Microbiol 70:, 183–196. [CrossRef][PubMed]
    [Google Scholar]
  62. Mathy N., Hébert A., Mervelet P., Bénard L., Dorléans A., Li de la Sierra-Gallay I., Noirot P., Putzer H., Condon C.. ( 2010;). Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. . Mol Microbiol 75:, 489–498. [CrossRef][PubMed]
    [Google Scholar]
  63. Meyer F., Overbeek R., Rodriguez A.. ( 2009;). FIGfams: yet another set of protein families. . Nucleic Acids Res 37:, 6643–6654. [CrossRef][PubMed]
    [Google Scholar]
  64. Müller S., Hoffmann T., Santos H., Saum S. H., Bremer E., Müller V.. ( 2011;). Bacterial abl-like genes: production of the archaeal osmolyte N(ϵ)-acetyl-β-lysine by homologous overexpression of the yodP-kamA genes in Bacillus subtilis. . Appl Microbiol Biotechnol 91:, 689–697. [CrossRef][PubMed]
    [Google Scholar]
  65. Nakano M. M., Zuber P.. ( 1998;). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). . Annu Rev Microbiol 52:, 165–190. [CrossRef][PubMed]
    [Google Scholar]
  66. Nakano M. M., Dailly Y. P., Zuber P., Clark D. P.. ( 1997;). Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. . J Bacteriol 179:, 6749–6755.[PubMed]
    [Google Scholar]
  67. Nakano C., Ozawa H., Akanuma G., Funa N., Horinouchi S.. ( 2009;). Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.. J Bacteriol 191:, 4916–4923. [CrossRef][PubMed]
    [Google Scholar]
  68. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C.. ( 2009;). Bacillithiol is an antioxidant thiol produced in bacilli. . Nat Chem Biol 5:, 625–627. [CrossRef][PubMed]
    [Google Scholar]
  69. Newton G. L., Leung S. S., Wakabayashi J. I., Rawat M., Fahey R. C.. ( 2011;). The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases. . Biochemistry 50:, 10751–10760. [CrossRef][PubMed]
    [Google Scholar]
  70. Oku H., Kaneda T.. ( 1988;). Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. . J Biol Chem 263:, 18386–18396.[PubMed]
    [Google Scholar]
  71. Ostrowski A., Mehert A., Prescott A., Kiley T. B., Stanley-Wall N. R.. ( 2011;). YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis.. J Bacteriol 193:, 4821–4831. [CrossRef][PubMed]
    [Google Scholar]
  72. Ouzounis C. A., Karp P. D.. ( 2002;). The past, present and future of genome-wide re-annotation. . Genome Biol 3:, comment2001.1. [CrossRef][PubMed]
    [Google Scholar]
  73. Overbeek R., Fonstein M., D’Souza M., Pusch G. D., Maltsev N.. ( 1999;). The use of gene clusters to infer functional coupling. . Proc Natl Acad Sci U S A 96:, 2896–2901. [CrossRef][PubMed]
    [Google Scholar]
  74. Peretó J., López-García P., Moreira D.. ( 2004;). Ancestral lipid biosynthesis and early membrane evolution. . Trends Biochem Sci 29:, 469–477. [CrossRef][PubMed]
    [Google Scholar]
  75. Pflüger K., Baumann S., Gottschalk G., Lin W., Santos H., Müller V.. ( 2003;). Lysine-2,3-aminomutase and beta-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Nϵ-acetyl-β-lysine and growth at high salinity. . Appl Environ Microbiol 69:, 6047–6055. [CrossRef][PubMed]
    [Google Scholar]
  76. Ramazzina I., Costa R., Cendron L., Berni R., Peracchi A., Zanotti G., Percudani R.. ( 2010;). An aminotransferase branch point connects purine catabolism to amino acid recycling. . Nat Chem Biol 6:, 801–806. [CrossRef][PubMed]
    [Google Scholar]
  77. Ruepp A., Müller H. N., Lottspeich F., Soppa J.. ( 1995;). Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution. . J Bacteriol 177:, 1129–1136.[PubMed]
    [Google Scholar]
  78. Santana M., Kunst F., Hullo M. F., Rapoport G., Danchin A., Glaser P.. ( 1992;). Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3–600 quinol oxidase. . J Biol Chem 267:, 10225–10231.[PubMed]
    [Google Scholar]
  79. Sekowska A., Coppée J. Y., Le Caer J. P., Martin-Verstraete I., Danchin A.. ( 2000;). S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. . Mol Microbiol 36:, 1135–1147. [CrossRef][PubMed]
    [Google Scholar]
  80. Sekowska A., Dénervaud V., Ashida H., Michoud K., Haas D., Yokota A., Danchin A.. ( 2004;). Bacterial variations on the methionine salvage pathway. . BMC Microbiol 4:, 9. [CrossRef][PubMed]
    [Google Scholar]
  81. Sekowska A., Masson J. B., Celani A., Danchin A., Vergassola M.. ( 2009;). Repulsion and metabolic switches in the collective behavior of bacterial colonies. . Biophys J 97:, 688–698. [CrossRef][PubMed]
    [Google Scholar]
  82. Shipkowski S., Brenchley J. E.. ( 2006;). Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases. . Appl Environ Microbiol 72:, 7730–7738. [CrossRef][PubMed]
    [Google Scholar]
  83. Shomura Y., Hinokuchi E., Ikeda H., Senoo A., Takahashi Y., Saito J., Komori H., Shibata N., Yonetani Y., Higuchi Y.. ( 2012;). Structural and enzymatic characterization of BacD, an l-amino acid dipeptide ligase from Bacillus subtilis.. Protein Sci 21:, 707–716. [CrossRef][PubMed]
    [Google Scholar]
  84. Smaldone G. T., Antelmann H., Gaballa A., Helmann J. D.. ( 2012;). The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases. . J Bacteriol 194:, 2586–2593. [CrossRef][PubMed]
    [Google Scholar]
  85. Smith A. A., Belda E., Viari A., Medigue C., Vallenet D.. ( 2012;). The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. . PLOS Comput Biol 8:, e1002540. [CrossRef][PubMed]
    [Google Scholar]
  86. Stok J. E., De Voss J.. ( 2000;). Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis.. Arch Biochem Biophys 384:, 351–360. [CrossRef][PubMed]
    [Google Scholar]
  87. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V.. ( 2000;). The COG database: a tool for genome-scale analysis of protein functions and evolution. . Nucleic Acids Res 28:, 33–36. [CrossRef][PubMed]
    [Google Scholar]
  88. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L.. & other authors ( 2003;). The COG database: an updated version includes eukaryotes. . BMC Bioinformatics 4:, 41. [CrossRef][PubMed]
    [Google Scholar]
  89. Upton H., Newton G. L., Gushiken M., Lo K., Holden D., Fahey R. C., Rawat M.. ( 2012;). Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis.. FEBS Lett 586:, 1004–1008. [CrossRef][PubMed]
    [Google Scholar]
  90. Vallenet D., Labarre L., Rouy Z., Barbe V., Bocs S., Cruveiller S., Lajus A., Pascal G., Scarpelli C., Médigue C.. ( 2006;). MaGe: a microbial genome annotation system supported by synteny results. . Nucleic Acids Res 34:, 53–65. [CrossRef][PubMed]
    [Google Scholar]
  91. Vallenet D., Engelen S., Mornico D., Cruveiller S., Fleury L., Lajus A., Rouy Z., Roche D., Salvignol G.. & other authors ( 2009;). MicroScope: a platform for microbial genome annotation and comparative genomics. . Database (Oxford) 2009:, bap021. [CrossRef][PubMed]
    [Google Scholar]
  92. Van Arsdell S. W., Perkins J. B., Yocum R. R., Luan L., Howitt C. L., Chatterjee N. P., Pero J. G.. ( 2005;). Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. . Biotechnol Bioeng 91:, 75–83. [CrossRef][PubMed]
    [Google Scholar]
  93. Winstedt L., von Wachenfeldt C.. ( 2000;). Terminal oxidases of Bacillus subtilis strain 168: one quinol oxidase, cytochrome aa3 or cytochrome bd, is required for aerobic growth. . J Bacteriol 182:, 6557–6564. [CrossRef][PubMed]
    [Google Scholar]
  94. Winstedt L., Yoshida K., Fujita Y., von Wachenfeldt C.. ( 1998;). Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. . J Bacteriol 180:, 6571–6580.[PubMed]
    [Google Scholar]
  95. Wu X., Wang X., Drlica K., Zhao X.. ( 2011;). A toxin–antitoxin module in Bacillus subtilis can both mitigate and amplify effects of lethal stress. . PLoS ONE 6:, e23909. [CrossRef][PubMed]
    [Google Scholar]
  96. Yoshida K., Yamaguchi M., Morinaga T., Ikeuchi M., Kinehara M., Ashida H.. ( 2006;). Genetic modification of Bacillus subtilis for production of d-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. . Appl Environ Microbiol 72:, 1310–1315. [CrossRef][PubMed]
    [Google Scholar]
  97. Yoshida K., Yamaguchi M., Morinaga T., Kinehara M., Ikeuchi M., Ashida H., Fujita Y.. ( 2008;). myo-Inositol catabolism in Bacillus subtilis.. J Biol Chem 283:, 10415–10424. [CrossRef][PubMed]
    [Google Scholar]
  98. Yu J., Hederstedt L., Piggot P. J.. ( 1995;). The cytochrome bc complex (menaquinone : cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. . J Bacteriol 177:, 6751–6760.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064691-0
Loading
/content/journal/micro/10.1099/mic.0.064691-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Supplementary Material 

PDF

Supplementary Material 

PDF

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error