1887

Abstract

is an opportunistic pathogen that primarily infects cystic fibrosis patients. Previously we have reported that mutations in , a LysR-type transcriptional regulator, and ShvR-regulated genes BCAS0208 and BCAS0201 (designated and , respectively) affect colony morphotype, biofilm and pellicle formation and virulence in . In this study we investigated the role of and in influencing lipid-metabolism-associated phenotypes. As previously reported for K56-2Δ, the Δ2 and  : :  mutants had no antifungal activity against and suggesting that these genes are involved in synthesis of a membrane-associated antifungal lipopeptide. Strains Δ2 and  : :  had reduced swarming motility and altered cell membrane morphology, both of which were restored to wild-type levels upon providing these genes . Both K56-2Δ and Δ2 showed increased uptake of the hydrophobic fluorescent probe -phenylnaphthylamine (NPN), indicating altered outer membrane properties. Total lipid profiles determined by TLC revealed distinct differences in cellular lipid compositions of K56-2Δ, Δ2 and  : :  compared with K56-2. Taken together, these results indicate that and are involved in metabolic pathway(s) influencing lipid profiles and affect both cell surface and antifungal properties of . .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064683-0
2013-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/603.html?itemId=/content/journal/micro/10.1099/mic.0.064683-0&mimeType=html&fmt=ahah

References

  1. Abdel-Mawgoud A. M., Lépine F., Déziel E.. ( 2010;). Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol86:1323–1336 [CrossRef][PubMed]
    [Google Scholar]
  2. Abe M., Nakazawa T.. ( 1994;). Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia . Microbiol Immunol38:1–9[PubMed][CrossRef]
    [Google Scholar]
  3. Ansari M. Z., Yadav G., Gokhale R. S., Mohanty D.. ( 2004;). NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res32:Web Server issueW405–W413 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernier S. P., Silo-Suh L., Woods D. E., Ohman D. E., Sokol P. A.. ( 2003;). Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun71:5306–5313 [CrossRef][PubMed]
    [Google Scholar]
  5. Bernier S. P., Nguyen D. T., Sokol P. A.. ( 2008;). A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infect Immun76:38–47 [CrossRef][PubMed]
    [Google Scholar]
  6. Chernish R. N., Aaron S. D.. ( 2003;). Approach to resistant Gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med9:509–515 [CrossRef][PubMed]
    [Google Scholar]
  7. Costa R., van Aarle I. M., Mendes R., van Elsas J. D.. ( 2009;). Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol11:159–175 [CrossRef][PubMed]
    [Google Scholar]
  8. Coutinho C. P., de Carvalho C. C., Madeira A., Pinto-de-Oliveira A., Sá-Correia I.. ( 2011;). Burkholderia cenocepacia phenotypic clonal variation during a 3.5-year colonization in the lungs of a cystic fibrosis patient. Infect Immun79:2950–2960 [CrossRef][PubMed]
    [Google Scholar]
  9. Cox A. D., Wilkinson S. G.. ( 1989;). Polar lipids and fatty acids of Pseudomonas cepacia . Biochim Biophys Acta1001:60–67 [CrossRef][PubMed]
    [Google Scholar]
  10. Daniels R., Vanderleyden J., Michiels J.. ( 2004;). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev28:261–289 [CrossRef][PubMed]
    [Google Scholar]
  11. Desai J. D., Banat I. M.. ( 1997;). Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev61:47–64[PubMed]
    [Google Scholar]
  12. Drevinek P., Mahenthiralingam E.. ( 2010;). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect16:821–830 [CrossRef][PubMed]
    [Google Scholar]
  13. Eberl L., Molin S., Givskov M.. ( 1999;). Surface motility of Serratia liquefaciens MG1. J Bacteriol181:1703–1712[PubMed]
    [Google Scholar]
  14. el-Banna N., Winkelmann G.. ( 1998;). Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol85:69–78 [CrossRef][PubMed]
    [Google Scholar]
  15. Folch J., Lees M., Sloane Stanley G. H.. ( 1957;). A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem226:497–509[PubMed]
    [Google Scholar]
  16. Fujimori D. G., Hrvatin S., Neumann C. S., Strieker M., Marahiel M. A., Walsh C. T.. ( 2007;). Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proc Natl Acad Sci U S A104:16498–16503 [CrossRef][PubMed]
    [Google Scholar]
  17. Grünewald J., Marahiel M. A.. ( 2006;). Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev70:121–146 [CrossRef][PubMed]
    [Google Scholar]
  18. Hancock R. E., Wong P. G.. ( 1984;). Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother26:48–52 [CrossRef][PubMed]
    [Google Scholar]
  19. Heinzelmann E., Berger S., Müller C., Härtner T., Poralla K., Wohlleben W., Schwartz D.. ( 2005;). An acyl-CoA dehydrogenase is involved in the formation of the Δcis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis . Microbiology151:1963–1974 [CrossRef][PubMed]
    [Google Scholar]
  20. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A.. & other authors ( 2009;). The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol191:261–277 [CrossRef][PubMed]
    [Google Scholar]
  21. Jørgensen H., Degnes K. F., Dikiy A., Fjaervik E., Klinkenberg G., Zotchev S. B.. ( 2010;). Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl Environ Microbiol76:283–293 [CrossRef][PubMed]
    [Google Scholar]
  22. Kang Y., Carlson R., Tharpe W., Schell M. A.. ( 1998;). Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani . Appl Environ Microbiol64:3939–3947[PubMed]
    [Google Scholar]
  23. Kearns D. B.. ( 2010;). A field guide to bacterial swarming motility. Nat Rev Microbiol8:634–644 [CrossRef][PubMed]
    [Google Scholar]
  24. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  25. Lai H. C., Soo P. C., Wei J. R., Yi W. C., Liaw S. J., Horng Y. T., Lin S. M., Ho S. W., Swift S., Williams P.. ( 2005;). The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol187:3407–3414 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee J. K., Zhao H.. ( 2007;). Identification and characterization of the flavin:NADH reductase (PrnF) involved in a novel two-component arylamine oxygenase. J Bacteriol189:8556–8563 [CrossRef][PubMed]
    [Google Scholar]
  27. Lim Y., Suh J. W., Kim S., Hyun B., Kim C., Lee C. H.. ( 1994;). Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J Antibiot (Tokyo) 47:1406–1416 [CrossRef][PubMed]
    [Google Scholar]
  28. LiPuma J. J., Spilker T., Gill L. H., Campbell P. W. III, Liu L., Mahenthiralingam E.. ( 2001;). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med164:92–96[PubMed][CrossRef]
    [Google Scholar]
  29. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A.. ( 2006;). A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo . J Bacteriol188:2073–2080 [CrossRef][PubMed]
    [Google Scholar]
  30. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. ( 2000;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913[PubMed]
    [Google Scholar]
  31. Mahenthiralingam E., Baldwin A., Dowson C. G.. ( 2008;). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol104:1539–1551 [CrossRef][PubMed]
    [Google Scholar]
  32. Mahenthiralingam E., Song L., Sass A., White J., Wilmot C., Marchbank A., Boaisha O., Paine J., Knight D., Challis G. L.. ( 2011;). Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria Genomic Island. Chem Biol18:665–677 [CrossRef][PubMed]
    [Google Scholar]
  33. Marchler-Bauer A., Anderson J. B., Cherukuri P. F., DeWeese-Scott C., Geer L. Y., Gwadz M., He S., Hurwitz D. I., Jackson J. D.. & other authors ( 2005;). CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res33:Database issueD192–D196 [CrossRef][PubMed]
    [Google Scholar]
  34. Moon S.-S., Kang P. M., Park K. S., Kim C. H.. ( 1996;). Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia . Phytochemistry42:365–368 [CrossRef]
    [Google Scholar]
  35. Müller C., Nolden S., Gebhardt P., Heinzelmann E., Lange C., Puk O., Welzel K., Wohlleben W., Schwartz D.. ( 2007;). Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis . Antimicrob Agents Chemother51:1028–1037 [CrossRef][PubMed]
    [Google Scholar]
  36. Nowak-Thompson B., Chaney N., Wing J. S., Gould S. J., Loper J. E.. ( 1999;). Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol181:2166–2174[PubMed]
    [Google Scholar]
  37. O’Grady E. P., Nguyen D. T., Weisskopf L., Eberl L., Sokol P. A.. ( 2011;). The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes. J Bacteriol193:163–176 [CrossRef][PubMed]
    [Google Scholar]
  38. Omura S., Tsuzuki K., Tanaka Y., Sakakibara H., Aizawa M., Lukacs G.. ( 1983;). Valine as a precursor of n-butyrate unit in the biosynthesis of macrolide aglycone. J Antibiot (Tokyo) 36:614–616 [CrossRef][PubMed]
    [Google Scholar]
  39. Saiman L., Siegel J.. ( 2004;). Infection control in cystic fibrosis. Clin Microbiol Rev17:57–71 [CrossRef][PubMed]
    [Google Scholar]
  40. Saleh O., Flinspach K., Westrich L., Kulik A., Gust B., Fiedler H. P., Heide L.. ( 2012;). Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem8:501–513 [CrossRef][PubMed]
    [Google Scholar]
  41. Schmidt S., Blom J. F., Pernthaler J., Berg G., Baldwin A., Mahenthiralingam E., Eberl L.. ( 2009;). Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol11:1422–1437 [CrossRef][PubMed]
    [Google Scholar]
  42. Schweizer H. P., Klassen T., Hoang T.. ( 1996;). Improved methods for gene analysis and expression in Pseudomonas spp. Molecular Biology of Pseudomonads229–237 Nakazawa T., Furukawa K., Hass D., Silver S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Sousa S. A., Ramos C. G., Leitão J. H.. ( 2011;). Burkholderia cepacia complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol2011:[PubMed][CrossRef]
    [Google Scholar]
  44. Speert D. P., Campbell M. E., Henry D. A., Milner R., Taha F., Gravelle A., Davidson A. G., Wong L. T., Mahenthiralingam E.. ( 2002;). Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med166:988–993 [CrossRef][PubMed]
    [Google Scholar]
  45. Springman A. C., Jacobs J. L., Somvanshi V. S., Sundin G. W., Mulks M. H., Whittam T. S., Viswanathan P., Gray R. L., Lipuma J. J., Ciche T. A.. ( 2009;). Genetic diversity and multihost pathogenicity of clinical and environmental strains of Burkholderia cenocepacia . Appl Environ Microbiol75:5250–5260 [CrossRef][PubMed]
    [Google Scholar]
  46. Subramoni S., Nguyen D. T., Sokol P. A.. ( 2011;). Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence. Infect Immun79:2984–2997 [CrossRef][PubMed]
    [Google Scholar]
  47. Tang L., Zhang Y. X., Hutchinson C. R.. ( 1994;). Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae . J Bacteriol176:6107–6119[PubMed]
    [Google Scholar]
  48. Tawfik K. A., Jeffs P., Bray B., Dubay G., Falkinham J. O. III, Mesbah M., Youssef D., Khalifa S., Schmidt E. W.. ( 2010;). Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org Lett12:664–666 [CrossRef][PubMed]
    [Google Scholar]
  49. Taylor C. J., Anderson A. J., Wilkinson S. G.. ( 1998;). Phenotypic variation of lipid composition in Burkholderia cepacia: a response to increased growth temperature is a greater content of 2-hydroxy acids in phosphatidylethanolamine and ornithine amide lipid. Microbiology144:1737–1745 [CrossRef][PubMed]
    [Google Scholar]
  50. Thomson E. L., Dennis J. J.. ( 2012;). A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence3:286–298 [CrossRef][PubMed]
    [Google Scholar]
  51. Tosato V., Albertini A. M., Zotti M., Sonda S., Bruschi C. V.. ( 1997;). Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology143:3443–3450 [CrossRef][PubMed]
    [Google Scholar]
  52. Vanlaere E., Lipuma J. J., Baldwin A., Henry D., De Brandt E., Mahenthiralingam E., Speert D., Dowson C., Vandamme P.. ( 2008;). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol58:1580–1590 [CrossRef][PubMed]
    [Google Scholar]
  53. Vanlaere E., Baldwin A., Gevers D., Henry D., De Brandt E., LiPuma J. J., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P.. ( 2009;). Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov.. Int J Syst Evol Microbiol59:102–111 [CrossRef][PubMed]
    [Google Scholar]
  54. Verstraeten N., Braeken K., Debkumari B., Fauvart M., Fransaer J., Vermant J., Michiels J.. ( 2008;). Living on a surface: swarming and biofilm formation. Trends Microbiol16:496–506 [CrossRef][PubMed]
    [Google Scholar]
  55. Weissman K. J., Leadlay P. F.. ( 2005;). Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol3:925–936 [CrossRef][PubMed]
    [Google Scholar]
  56. Winsor G. L., Khaira B., Van Rossum T., Lo R., Whiteside M. D., Brinkman F. S.. ( 2008;). The Burkholderia Genome Database: facilitating flexible queries and comparative analyses. Bioinformatics24:2803–2804 [CrossRef][PubMed]
    [Google Scholar]
  57. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M.. ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.. Microbiol Immunol36:1251–1275[PubMed][CrossRef]
    [Google Scholar]
  58. Zhang Y. X., Denoya C. D., Skinner D. D., Fedechko R. W., McArthur H. A., Morgenstern M. R., Davies R. A., Lobo S., Reynolds K. A., Hutchinson C. R.. ( 1999;). Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from Streptomyces coelicolor and Streptomyces avermitilis provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production. Microbiology145:2323–2334[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064683-0
Loading
/content/journal/micro/10.1099/mic.0.064683-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error