1887

Abstract

The gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in . To understand the broader regulatory roles of LutR in , we studied the genome-wide effects of a null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in mutant cells, as compared with wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in , including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064675-0
2014-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/243.html?itemId=/content/journal/micro/10.1099/mic.0.064675-0&mimeType=html&fmt=ahah

References

  1. Albano M. , Smits W. K. , Ho L. T. Y. , Kraigher B. , Mandic-Mulec I. , Kuipers O. P. , Dubnau D. . ( 2005; ). The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. . J Bacteriol 187:, 2010–2019. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aravind L. , Anantharaman V. . ( 2003; ). HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. . FEMS Microbiol Lett 222:, 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  3. Auchtung J. M. , Lee C. A. , Monson R. E. , Lehman A. P. , Grossman A. D. . ( 2005; ). Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. . Proc Natl Acad Sci U S A 102:, 12554–12559. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bailey T. L. , Bodén M. , Buske F. A. , Frith M. , Grant C. E. , Clementi L. , Ren J. , Li W. W. , Noble W. S. . ( 2009; ). meme suite: tools for motif discovery and searching. . Nucleic Acids Res 37: (Web Server issue), W202–W208. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bisicchia P. , Noone D. , Lioliou E. , Howell A. , Quigley S. , Jensen T. , Jarmer H. , Devine K. M. . ( 2007; ). The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis . . Mol Microbiol 65:, 180–200. [CrossRef] [PubMed]
    [Google Scholar]
  6. Black P. N. , DiRusso C. C. . ( 1994; ). Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli . . Biochim Biophys Acta 1210:, 123–145. [CrossRef] [PubMed]
    [Google Scholar]
  7. Blom E.-J. , Ridder A. N. J. A. , Lulko A. T. , Roerdink J. B. T. M. , Kuipers O. P. . ( 2011; ). Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis . . PLoS ONE 6:, e27160. [CrossRef] [PubMed]
    [Google Scholar]
  8. Branda S. S. , González-Pastor J. E. , Ben-Yehuda S. , Losick R. , Kolter R. . ( 2001; ). Fruiting body formation by Bacillus subtilis . . Proc Natl Acad Sci U S A 98:, 11621–11626. [CrossRef] [PubMed]
    [Google Scholar]
  9. Britton R. A. , Eichenberger P. , Gonzalez-Pastor J. E. , Fawcett P. , Monson R. , Losick R. , Grossman A. D. . ( 2002; ). Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. . J Bacteriol 184:, 4881–4890. [CrossRef] [PubMed]
    [Google Scholar]
  10. Butcher B. G. , Lin Y. P. , Helmann J. D. . ( 2007; ). The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. . J Bacteriol 189:, 8616–8625. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chai Y. , Kolter R. , Losick R. . ( 2009; ). A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. . J Bacteriol 191:, 2423–2430. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chai Y. , Norman T. , Kolter R. , Losick R. . ( 2010; ). An epigenetic switch governing daughter cell separation in Bacillus subtilis . . Genes Dev 24:, 754–765. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chu F. , Kearns D. B. , Branda S. S. , Kolter R. , Losick R. . ( 2006; ). Targets of the master regulator of biofilm formation in Bacillus subtilis . . Mol Microbiol 59:, 1216–1228. [CrossRef] [PubMed]
    [Google Scholar]
  14. DiRusso C. C. , Heimert T. L. , Metzger A. K. . ( 1992; ). Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. . J Biol Chem 267:, 8685–8691.[PubMed]
    [Google Scholar]
  15. Eggert T. , Pencreac’h G. , Douchet I. , Verger R. , Jaeger K. E. . ( 2000; ). A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. . Eur J Biochem 267:, 6459–6469. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ellermeier C. D. , Hobbs E. C. , Gonzalez-Pastor J. E. , Losick R. . ( 2006; ). A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. . Cell 124:, 549–559. [CrossRef] [PubMed]
    [Google Scholar]
  17. Errington J. . ( 2003; ). Regulation of endospore formation in Bacillus subtilis . . Nat Rev Microbiol 1:, 117–126. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gabdank I. , Barash D. , Trifonov E. N. . ( 2009; ). Nucleosome DNA bendability matrix (C. elegans). . J Biomol Struct Dyn 26:, 403–411. [CrossRef] [PubMed]
    [Google Scholar]
  19. Garti-Levi S. , Hazan R. , Kain J. , Fujita M. , Ben-Yehuda S. . ( 2008; ). The FtsEX ABC transporter directs cellular differentiation in Bacillus subtilis . . Mol Microbiol 69:, 1018–1028. [CrossRef] [PubMed]
    [Google Scholar]
  20. González-Pastor J. E. , Hobbs E. C. , Losick R. . ( 2003; ). Cannibalism by sporulating bacteria. . Science 301:, 510–513. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gorelik M. , Lunin V. V. , Skarina T. , Savchenko A. . ( 2006; ). Structural characterization of GntR/HutC family signaling domain. . Protein Sci 15:, 1506–1511. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hansen M. E. , Wangari R. , Hansen E. B. , Mijakovic I. , Jensen P. R. . ( 2009; ). Engineering of Bacillus subtilis 168 for increased nisin resistance. . Appl Environ Microbiol 75:, 6688–6695. [CrossRef] [PubMed]
    [Google Scholar]
  23. Haydon D. J. , Guest J. R. . ( 1991; ). A new family of bacterial regulatory proteins. . FEMS Microbiol Lett 79:, 291–296. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hobley L. , Ostrowski A. , Rao F. V. , Bromley K. M. , Porter M. , Prescott A. R. , MacPhee C. E. , van Aalten D. M. , Stanley-Wall N. R. . ( 2013; ). BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. . Proc Natl Acad Sci U S A 110:, 13600–13605. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hoffman L. R. , D’Argenio D. A. , MacCoss M. J. , Zhang Z. , Jones R. A. , Miller S. I. . ( 2005; ). Aminoglycoside antibiotics induce bacterial biofilm formation. . Nature 436:, 1171–1175. [CrossRef] [PubMed]
    [Google Scholar]
  26. Huang X. , Gaballa A. , Cao M. , Helmann J. D. . ( 1999; ). Identification of target promoters for the Bacillus subtilis extracytoplasmic function σ factor, σW . . Mol Microbiol 31:, 361–371. [CrossRef] [PubMed]
    [Google Scholar]
  27. Inaoka T. , Takahashi K. , Ohnishi-Kameyama M. , Yoshida M. , Ochi K. . ( 2003; ). Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis . . J Biol Chem 278:, 2169–2176. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kobayashi K. , Iwano M. . ( 2012; ). BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. . Mol Microbiol 85:, 51–66. [CrossRef] [PubMed]
    [Google Scholar]
  29. Köroğlu T. E. , Kurt-Gür G. , Unlü E. C. , Yazgan-Karataş A. . ( 2008; ). The novel gene yvfI in Bacillus subtilis is essential for bacilysin biosynthesis. . Antonie van Leeuwenhoek 94:, 471–479. [CrossRef] [PubMed]
    [Google Scholar]
  30. Köroğlu T. E. , Oğülür İ. , Mutlu S. , Yazgan-Karataş A. , Özcengiz G. . ( 2011; ). Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis . . J Mol Microbiol Biotechnol 20:, 144–155. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kovács A. T. , Kuipers O. P. . ( 2011; ). Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. . J Bacteriol 193:, 998–1002. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kovács A. T. , van Gestel J. , Kuipers O. P. . ( 2012; ). The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins. . Mol Microbiol 85:, 8–11. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kunst F. , Ogasawara N. , Moszer I. , Albertini A. M. , Alloni G. , Azevedo V. , Bertero M. G. , Bessières P. , Bolotin A. . & other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . . Nature 390:, 249–256. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lee H. Y. L. , An J. H. , Kim Y. S. . ( 2000; ). Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii . . Eur J Biochem 267:, 7224–7230. [CrossRef] [PubMed]
    [Google Scholar]
  35. Marchler-Bauer A. , Anderson J. B. , Cherukuri P. F. , DeWeese-Scott C. , Geer L. Y. , Gwadz M. , He S. , Hurwitz D. I. , Jackson J. D. . & other authors ( 2005; ). CDD: a conserved domain database for protein classification. . Nucleic Acids Res 33: (Database issue), D192–D196. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mascher T. , Zimmer S. L. , Smith T. A. , Helmann J. D. . ( 2004; ). Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis . . Antimicrob Agents Chemother 48:, 2888–2896. [CrossRef] [PubMed]
    [Google Scholar]
  37. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  38. Mitsui N. , Murasawa H. , Sekiguchi J. . ( 2011; ). Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto). . J Gen Appl Microbiol 57:, 35–43. [CrossRef] [PubMed]
    [Google Scholar]
  39. Murphy D. . ( 2002; ). Gene expression studies using microarrays: principles, problems, and prospects. . Adv Physiol Educ 26:, 256–270.[PubMed] [CrossRef]
    [Google Scholar]
  40. Nakano M. M. , Marahiel M. A. , Zuber P. . ( 1988; ). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis . . J Bacteriol 170:, 5662–5668.[PubMed]
    [Google Scholar]
  41. Nicholson W. L. , Setlow P. . ( 1990; ). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R. , Cutting S. M. . . Chichester:: Wiley;.
    [Google Scholar]
  42. Pedrido M. E. , de Oña P. , Ramirez W. , Leñini C. , Goñi A. , Grau R. . ( 2013; ). Spo0A links de novo fatty acid synthesis to sporulation and biofilm development in Bacillus subtilis . . Mol Microbiol 87:, 348–367. [CrossRef] [PubMed]
    [Google Scholar]
  43. Perry D. , Abraham E. P. . ( 1979; ). Transport and metabolism of bacilysin and other peptides by suspensions of Staphylococcus aureus . . J Gen Microbiol 115:, 213–221. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pfaffl M. W. . ( 2004; ). Quantification strategies in real-time PCR. . In A–Z of Quantitative PCR, pp. 87–112. Edited by Bustin S. A. . . La Jolla, CA:: International University Line (IUL);.
    [Google Scholar]
  45. Qian Q. , Lee C. Y. , Helmann J. D. , Strauch M. A. . ( 2002; ). AbrB is a regulator of the sigma(W) regulon in Bacillus subtilis . . FEMS Microbiol Lett 211:, 219–223.[PubMed]
    [Google Scholar]
  46. Rigali S. , Derouaux A. , Giannotta F. , Dusart J. . ( 2002; ). Subdivision of the helix–turn–helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. . J Biol Chem 277:, 12507–12515. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rosinski J. A. , Atchley W. R. . ( 1999; ). Molecular evolution of helix–turn–helix proteins. . J Mol Evol 49:, 301–309. [CrossRef] [PubMed]
    [Google Scholar]
  48. São-José C. , Baptista C. , Santos M. A. . ( 2004; ). Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. . J Bacteriol 186:, 8337–8346. [CrossRef] [PubMed]
    [Google Scholar]
  49. Steinborn G. , Hajirezaei M. R. , Hofemeister J. . ( 2005; ). bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains. . Arch Microbiol 183:, 71–79. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tabata K. , Ikeda H. , Hashimoto S. . ( 2005; ). ywfE in Bacillus subtilis codes for a novel enzyme, l-amino acid ligase. . J Bacteriol 187:, 5195–5202. [CrossRef] [PubMed]
    [Google Scholar]
  51. Vagner V. , Dervyn E. , Ehrlich S. D. . ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis . . Microbiology 144:, 3097–3104. [CrossRef] [PubMed]
    [Google Scholar]
  52. van Aalten D. M. F. , DiRusso C. C. , Knudsen J. , Wierenga R. K. . ( 2000; ). Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. . EMBO J 19:, 5167–5177. [CrossRef] [PubMed]
    [Google Scholar]
  53. Verhamme D. T. , Kiley T. B. , Stanley-Wall N. R. . ( 2007; ). DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis . . Mol Microbiol 65:, 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vlamakis H. , Chai Y. , Beauregard P. , Losick R. , Kolter R. . ( 2013; ). Sticking together: building a biofilm the Bacillus subtilis way. . Nat Rev Microbiol 11:, 157–168. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yamaguchi H. , Furuhata K. , Fukushima T. , Yamamoto H. , Sekiguchi J. . ( 2004; ). Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. . J Biosci Bioeng 98:, 174–181.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064675-0
Loading
/content/journal/micro/10.1099/mic.0.064675-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error