1887

Abstract

Iron is an essential element but can be toxic at high concentrations. Therefore, its acquisition and storage require tight control. encodes the global regulator Fur (ferric uptake regulator) and the small regulatory non-coding RNAs (sRNAs) RfrA and RfrB, homologues of RyhB. The role of these iron homeostasis regulators was investigated in serovar Typhi (. Typhi). Strains containing either single or combined deletions of these regulators were obtained. The mutants were tested for growth in low and high iron conditions, resistance to oxidative stress, expression and production of siderophores, and during interaction with host cells. The mutant showed a growth defect and was sensitive to hydrogen peroxide. The expression of the sRNAs was responsible for these defects. Siderophore expression by . Typhi and both sRNAs were regulated by iron and by Fur. Fur contributed to invasion of epithelial cells, and was shown for the first time to play a role in phagocytosis and intracellular survival of Typhi in human macrophages. The sRNAs RfrA and RfrB were not required for interaction with epithelial cells, but both sRNAs were important for optimal intracellular replication in macrophages. In Typhi, Fur is a repressor of both sRNAs, and loss of either RfrA or RfrB resulted in distinct phenotypes, suggesting a non-redundant role for these regulatory RNAs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064329-0
2013-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/591.html?itemId=/content/journal/micro/10.1099/mic.0.064329-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C.. ( 1998;). Iron storage in bacteria. Adv Microb Physiol40:281–351 [CrossRef][PubMed]
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  3. Basso H., Rharbaoui F., Staendner L. H., Medina E., García-Del Portillo F., Guzmán C. A.. ( 2002;). Characterization of a novel intracellularly activated gene from Salmonella enterica serovar typhi. Infect Immun70:5404–5411[PubMed][CrossRef]
    [Google Scholar]
  4. Bäumler A. J., Tsolis R. M., van der Velden A. W., Stojiljkovic I., Anic S., Heffron F.. ( 1996;). Identification of a new iron regulated locus of Salmonella typhi . Gene183:207–213 [CrossRef][PubMed]
    [Google Scholar]
  5. Bjarnason J., Southward C. M., Surette M. G.. ( 2003;). Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol185:4973–4982 [CrossRef][PubMed]
    [Google Scholar]
  6. Boyer E., Bergevin I., Malo D., Gros P., Cellier M. F.. ( 2002;). Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun70:6032–6042 [CrossRef][PubMed]
    [Google Scholar]
  7. Curtiss R. III, Wanda S. Y., Gunn B. M., Zhang X., Tinge S. A., Ananthnarayan V., Mo H., Wang S., Kong W.. ( 2009;). Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo . Infect Immun77:1071–1082 [CrossRef][PubMed]
    [Google Scholar]
  8. Daigle F., Graham J. E., Curtiss R. III. ( 2001;). Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol41:1211–1222 [CrossRef][PubMed]
    [Google Scholar]
  9. Ellermeier J. R., Slauch J. M.. ( 2008;). Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol190:476–486[PubMed][CrossRef]
    [Google Scholar]
  10. Ernst J. F., Bennett R. L., Rothfield L. I.. ( 1978;). Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium . J Bacteriol135:928–934[PubMed]
    [Google Scholar]
  11. Faucher S. P., Porwollik S., Dozois C. M., McClelland M., Daigle F.. ( 2006;). Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A103:1906–1911 [CrossRef][PubMed]
    [Google Scholar]
  12. Faucher S. P., Forest C., Béland M., Daigle F.. ( 2009;). A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology155:477–488 [CrossRef][PubMed]
    [Google Scholar]
  13. Foster J. W.. ( 1991;). Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol173:6896–6902[PubMed]
    [Google Scholar]
  14. Foster J. W., Hall H. K.. ( 1992;). Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol174:4317–4323[PubMed]
    [Google Scholar]
  15. Galán J. E., Curtiss R. III. ( 1989;). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A86:6383–6387 [CrossRef][PubMed]
    [Google Scholar]
  16. Garcia-del Portillo F., Foster J. W., Finlay B. B.. ( 1993;). Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun61:4489–4492[PubMed]
    [Google Scholar]
  17. Hall H. K., Foster J. W.. ( 1996;). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol178:5683–5691[PubMed]
    [Google Scholar]
  18. Hantke K.. ( 2001;). Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177 [CrossRef][PubMed]
    [Google Scholar]
  19. Jacques J. F., Jang S., Prévost K., Desnoyers G., Desmarais M., Imlay J., Massé E.. ( 2006;). RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli . Mol Microbiol62:1181–1190 [CrossRef][PubMed]
    [Google Scholar]
  20. Kaniga K., Compton M. S., Curtiss R. III, Sundaram P.. ( 1998;). Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infect Immun66:5599–5606[PubMed]
    [Google Scholar]
  21. Kim J. N., Kwon Y. M.. ( 2013;). Genetic and phenotypic characterization of the RyhB regulon in Salmonella Typhimurium. Microbiol Res168:41–49 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee C. A., Falkow S.. ( 1990;). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A87:4304–4308 [CrossRef][PubMed]
    [Google Scholar]
  23. Massé E., Gottesman S.. ( 2002;). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  24. Massé E., Vanderpool C. K., Gottesman S.. ( 2005;). Effect of RyhB small RNA on global iron use in Escherichia coli . J Bacteriol187:6962–6971 [CrossRef][PubMed]
    [Google Scholar]
  25. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Ortega A., Gonzalo-Asensio J., García-Del Portillo F.. ( 2012;). Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol9:469–488[PubMed][CrossRef]
    [Google Scholar]
  27. Padalon-Brauch G., Hershberg R., Elgrably-Weiss M., Baruch K., Rosenshine I., Margalit H., Altuvia S.. ( 2008;). Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res36:1913–1927 [CrossRef][PubMed]
    [Google Scholar]
  28. Riesenberg-Wilmes M. R., Bearson B., Foster J. W., Curtis R. III. ( 1996;). Role of the acid tolerance response in virulence of Salmonella typhimurium . Infect Immun64:1085–1092[PubMed]
    [Google Scholar]
  29. Salvail H., Lanthier-Bourbonnais P., Sobota J. M., Caza M., Benjamin J. A., Mendieta M. E., Lépine F., Dozois C. M., Imlay J., Massé E.. ( 2010;). A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci U S A107:15223–15228 [CrossRef][PubMed]
    [Google Scholar]
  30. Schwyn B., Neilands J. B.. ( 1987;). Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56 [CrossRef][PubMed]
    [Google Scholar]
  31. Simons R. W., Houman F., Kleckner N.. ( 1987;). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  32. Teixidó L., Carrasco B., Alonso J. C., Barbé J., Campoy S.. ( 2011;). Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro . PLoS ONE6:e19711[PubMed][CrossRef]
    [Google Scholar]
  33. Touati D., Jacques M., Tardat B., Bouchard L., Despied S.. ( 1995;). Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol177:2305–2314[PubMed]
    [Google Scholar]
  34. Troxell B., Fink R. C., Porwollik S., McClelland M., Hassan H. M.. ( 2011a;). The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol11:236 [CrossRef][PubMed]
    [Google Scholar]
  35. Troxell B., Sikes M. L., Fink R. C., Vazquez-Torres A., Jones-Carson J., Hassan H. M.. ( 2011b;). Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J Bacteriol193:497–505 [CrossRef][PubMed]
    [Google Scholar]
  36. Tsolis R. M., Bäumler A. J., Stojiljkovic I., Heffron F.. ( 1995;). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol177:4628–4637[PubMed]
    [Google Scholar]
  37. Večerek B., Moll I., Bläsi U.. ( 2007;). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J26:965–975 [CrossRef][PubMed]
    [Google Scholar]
  38. Velayudhan J., Castor M., Richardson A., Main-Hester K. L., Fang F. C.. ( 2007;). The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron–sulphur cluster repair and virulence. Mol Microbiol63:1495–1507 [CrossRef][PubMed]
    [Google Scholar]
  39. Wang R. F., Kushner S. R.. ( 1991;). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene100:195–199[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064329-0
Loading
/content/journal/micro/10.1099/mic.0.064329-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error