1887

Abstract

The signalling molecule indole occurs in significant amounts in the mammalian intestinal tract and regulates diverse microbial processes, including bacterial motility, biofilm formation, antibiotic resistance and host cell invasion. In , the enzyme tryptophanase (TnaA) produces indole from tryptophan, but it is not clear what determines how much indole can produce and excrete, making it difficult to interpret experiments that investigate the biological effects of indole at high concentrations. Here, we report that the final yield of indole depends directly, and perhaps solely, on the amount of exogenous tryptophan. When supplied with a range of tryptophan concentrations, converted this amino acid into an equal amount of indole, up to almost 5 mM, an amount well within the range of the highest concentrations so far examined for their physiological effects. Indole production relied heavily on the tryptophan-specific transporter TnaB, even though the alternative transporters AroP and Mtr could import sufficient tryptophan to induce expression. This TnaB requirement proceeded via tryptophan transport and was not caused by activation of TnaA itself. Bacterial growth was unaffected by the presence of TnaA in the absence of exogenous tryptophan, suggesting that the enzyme does not hydrolyse significant quantities of the internal anabolic amino acid pool. The results imply that synthesizes TnaA and TnaB mainly, or solely, for the purpose of converting exogenous tryptophan into indole, under conditions and for signalling purposes that remain to be fully elucidated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064139-0
2013-02-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/402.html?itemId=/content/journal/micro/10.1099/mic.0.064139-0&mimeType=html&fmt=ahah

References

  1. Bansal T., Englert D., Lee J., Hegde M., Wood T. K., Jayaraman A.. ( 2007;). Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. . Infect Immun 75:, 4597–4607. [CrossRef][PubMed]
    [Google Scholar]
  2. Bansal T., Alaniz R. C., Wood T. K., Jayaraman A.. ( 2010;). The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. . Proc Natl Acad Sci U S A 107:, 228–233. [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett B. D., Kimball E. H., Gao M., Osterhout R., Van Dien S. J., Rabinowitz J. D.. ( 2009;). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. . Nat Chem Biol 5:, 593–599. [CrossRef][PubMed]
    [Google Scholar]
  4. Bhatt S., Anyanful A., Kalman D.. ( 2011;). CsrA and TnaB coregulate tryptophanase activity to promote exotoxin-induced killing of Caenorhabditis elegans by enteropathogenic Escherichia coli. . J Bacteriol 193:, 4516–4522. [CrossRef][PubMed]
    [Google Scholar]
  5. Bilezikian J. P., Kaempfer R. O., Magasanik B.. ( 1967;). Mechanism of tryptophanase induction in Escherichia coli. . J Mol Biol 27:, 495–506. [CrossRef]
    [Google Scholar]
  6. Biosciences ( 2006;). BD Bionutrients Technical Manual, 3rd edn. http//ww.bd.com/ds/technicalCenter/misc/br_3_2547.pdf
  7. Brown K. D.. ( 1970;). Formation of aromatic amino acid pools in Escherichia coli K-12. . J Bacteriol 104:, 177–188.[PubMed]
    [Google Scholar]
  8. Chant E. L., Summers D. K.. ( 2007;). Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. . Mol Microbiol 63:, 35–43. [CrossRef][PubMed]
    [Google Scholar]
  9. Chimerel C., Field C. M., Piñero-Fernandez S., Keyser U. F., Summers D. K.. ( 2012;). Indole prevents Escherichia coli cell division by modulating membrane potential. . Biochim Biophys Acta 1818:, 1590–1594. [CrossRef][PubMed]
    [Google Scholar]
  10. Cormack B.. ( 2001;). Directed mutagenesis using the polymerase chain reaction. . Curr Protoc Mol Biol, Chapter 8:, 5.[PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  12. Deeley M. C., Yanofsky C.. ( 1981;). Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. . J Bacteriol 147:, 787–796.[PubMed]
    [Google Scholar]
  13. Di Martino P., Fursy R., Bret L., Sundararaju B., Phillips R. S.. ( 2003;). Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. . Can J Microbiol 49:, 443–449. [CrossRef][PubMed]
    [Google Scholar]
  14. Dinh T., Bernhardt T. G.. ( 2011;). Using superfolder green fluorescent protein for periplasmic protein localization studies. . J Bacteriol 193:, 4984–4987. [CrossRef][PubMed]
    [Google Scholar]
  15. Domka J., Lee J., Wood T. K.. ( 2006;). YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. . Appl Environ Microbiol 72:, 2449–2459. [CrossRef][PubMed]
    [Google Scholar]
  16. Field C. M., Summers D. K.. ( 2012;). Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. . Plasmid 67:, 88–94. [CrossRef][PubMed]
    [Google Scholar]
  17. Hirakawa H., Inazumi Y., Masaki T., Hirata T., Yamaguchi A.. ( 2005;). Indole induces the expression of multidrug exporter genes in Escherichia coli. . Mol Microbiol 55:, 1113–1126. [CrossRef][PubMed]
    [Google Scholar]
  18. Hirakawa H., Kodama T., Takumi-Kobayashi A., Honda T., Yamaguchi A.. ( 2009;). Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157 : H7. . Microbiology 155:, 541–550. [CrossRef][PubMed]
    [Google Scholar]
  19. Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F. U., Kerner M. J., Frishman D.. ( 2008;). Protein abundance profiling of the Escherichia coli cytosol. . BMC Genomics 9:, 102. [CrossRef][PubMed]
    [Google Scholar]
  20. Kamaraju K., Smith J., Wang J., Roy V., Sintim H. O., Bentley W. E., Sukharev S.. ( 2011;). Effects on membrane lateral pressure suggest permeation mechanisms for bacterial quorum signaling molecules. . Biochemistry 50:, 6983–6993. [CrossRef][PubMed]
    [Google Scholar]
  21. Karlin D. A., Mastromarino A. J., Jones R. D., Stroehlein J. R., Lorentz O.. ( 1985;). Fecal skatole and indole and breath methane and hydrogen in patients with large bowel polyps or cancer. . J Cancer Res Clin Oncol 109:, 135–141. [CrossRef][PubMed]
    [Google Scholar]
  22. Keszthelyi D., Troost F. J., Jonkers D. M., van Donkelaar E. L., Dekker J., Buurman W. A., Masclee A. A.. ( 2012;). Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine?. Am J Clin Nutr 95:, 603–608. [CrossRef][PubMed]
    [Google Scholar]
  23. Knarreborg A., Beck J., Jensen M., Laue A., Agergaard N., Jensen B.. ( 2002;). Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs. . Anim Sci 74:, 445–453.
    [Google Scholar]
  24. Kogan A., Gdalevsky G. Y., Cohen-Luria R., Goldgur Y., Phillips R. S., Parola A. H., Almog O.. ( 2009;). Conformational changes and loose packing promote E. coli tryptophanase cold lability. . BMC Struct Biol 9:, 65. [CrossRef][PubMed]
    [Google Scholar]
  25. Kuczyńska-Wiśnik D., Matuszewska E., Laskowska E.. ( 2010;). Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole. . Microbiology 156:, 148–157. [CrossRef][PubMed]
    [Google Scholar]
  26. Lane A. N.. ( 1986;). The interaction of the Trp repressor from Escherichia coli with l-tryptophan and indole propanoic acid. . Eur J Biochem 157:, 405–413. [CrossRef][PubMed]
    [Google Scholar]
  27. Leblanc S. K., Oates C. W., Raivio T. L.. ( 2011;). Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. . J Bacteriol 193:, 3367–3375. [CrossRef][PubMed]
    [Google Scholar]
  28. Lee J. H., Lee J.. ( 2010;). Indole as an intercellular signal in microbial communities. . FEMS Microbiol Rev 34:, 426–444.[PubMed]
    [Google Scholar]
  29. Lee J., Jayaraman A., Wood T. K.. ( 2007a;). Indole is an inter-species biofilm signal mediated by SdiA. . BMC Microbiol 7:, 42. [CrossRef][PubMed]
    [Google Scholar]
  30. Lee J., Bansal T., Jayaraman A., Bentley W. E., Wood T. K.. ( 2007b;). Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. . Appl Environ Microbiol 73:, 4100–4109. [CrossRef][PubMed]
    [Google Scholar]
  31. Lee J., Attila C., Cirillo S. L., Cirillo J. D., Wood T. K.. ( 2009;). Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. . Microb Biotechnol 2:, 75–90. [CrossRef][PubMed]
    [Google Scholar]
  32. Lee H. H., Molla M. N., Cantor C. R., Collins J. J.. ( 2010;). Bacterial charity work leads to population-wide resistance. . Nature 467:, 82–85. [CrossRef][PubMed]
    [Google Scholar]
  33. Lee J. H., Kim Y. G., Cho M. H., Wood T. K., Lee J.. ( 2011;). Transcriptomic analysis for genetic mechanisms of the factors related to biofilm formation in Escherichia coli O157 : H7. . Curr Microbiol 62:, 1321–1330. [CrossRef][PubMed]
    [Google Scholar]
  34. Li G., Young K. D.. ( 2012;). Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli. . Mol Microbiol 84:, 276–295. [CrossRef][PubMed]
    [Google Scholar]
  35. London J., Skrzynia C., Goldberg M. E.. ( 1974;). Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. . Eur J Biochem 47:, 409–415. [CrossRef][PubMed]
    [Google Scholar]
  36. Mueller R. S., Beyhan S., Saini S. G., Yildiz F. H., Bartlett D. H.. ( 2009;). Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. . J Bacteriol 191:, 3504–3516. [CrossRef][PubMed]
    [Google Scholar]
  37. Newton W. A., Morino Y., Snell E. E.. ( 1965;). Properties of crystalline tryptophanase. . J Biol Chem 240:, 1211–1218.[PubMed]
    [Google Scholar]
  38. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S.. ( 2012;). Host–gut microbiota metabolic interactions. . Science 336:, 1262–1267. [CrossRef][PubMed]
    [Google Scholar]
  39. Nikaido E., Shirosaka I., Yamaguchi A., Nishino K.. ( 2011;). Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. . Microbiology 157:, 648–655. [CrossRef][PubMed]
    [Google Scholar]
  40. Nikaido E., Giraud E., Baucheron S., Yamasaki S., Wiedemann A., Okamoto K., Takagi T., Yamaguchi A., Cloeckaert A., Nishino K.. ( 2012;). Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. . Gut Pathog 4:, 5. [CrossRef][PubMed]
    [Google Scholar]
  41. Nishino K., Honda T., Yamaguchi A.. ( 2005;). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. . J Bacteriol 187:, 1763–1772. [CrossRef][PubMed]
    [Google Scholar]
  42. Oh S., Go G. W., Mylonakis E., Kim Y.. ( 2012;). The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. . J Appl Microbiol 113:, 622–628. [CrossRef][PubMed]
    [Google Scholar]
  43. Pédelacq J. D., Cabantous S., Tran T., Terwilliger T. C., Waldo G. S.. ( 2006;). Engineering and characterization of a superfolder green fluorescent protein. . Nat Biotechnol 24:, 79–88. [CrossRef][PubMed]
    [Google Scholar]
  44. Piñero-Fernandez S., Chimerel C., Keyser U. F., Summers D. K.. ( 2011;). Indole transport across Escherichia coli membranes. . J Bacteriol 193:, 1793–1798. [CrossRef][PubMed]
    [Google Scholar]
  45. Raut J. S., Shinde R. B., Karuppayil M. S.. ( 2012;). Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. . African J Microbiol Res 6:, 6005–6012.
    [Google Scholar]
  46. Sarsero J. P., Wookey P. J., Gollnick P., Yanofsky C., Pittard A. J.. ( 1991;). A new family of integral membrane proteins involved in transport of aromatic amino acids in Escherichia coli. . J Bacteriol 173:, 3231–3234.[PubMed]
    [Google Scholar]
  47. Scheer M., Grote A., Chang A., Schomburg I., Munaretto C., Rother M., Söhngen C., Stelzer M., Thiele J., Schomburg D.. ( 2011;). BRENDA, the enzyme information system in 2011. . Nucleic Acids Res 39: (Database issue), D670–D676. [CrossRef][PubMed]
    [Google Scholar]
  48. Smith T.. ( 1897;). A modification of the method for determining the production of indol by bacteria. . J Exp Med 2:, 543–547. [CrossRef][PubMed]
    [Google Scholar]
  49. Snell E. E.. ( 1975;). Tryptophanase: structure, catalytic activities, and mechanism of action. . Adv Enzymol Relat Areas Mol Biol 42:, 287–333.[PubMed]
    [Google Scholar]
  50. Stewart V., Yanofsky C.. ( 1985;). Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. . J Bacteriol 164:, 731–740.[PubMed]
    [Google Scholar]
  51. US Department of Agriculture ( 2011;). USDA National Nutrient Database for Standard Reference, Release 24. US Department of Agriculture, Agricultural Research Service. http://ars.usda.gov/Services/docs.htm?docid=22770
  52. Vega N. M., Allison K. R., Khalil A. S., Collins J. J.. ( 2012;). Signaling-mediated bacterial persister formation. . Nat Chem Biol 8:, 431–433. [CrossRef][PubMed]
    [Google Scholar]
  53. Watanabe T., Snell E. E.. ( 1977;). The interaction of Escherichia coli tryptophanase with various amino acids and their analogs. Active site mapping. . J Biochem 82:, 733–745.[PubMed]
    [Google Scholar]
  54. Wesoly R., Weiler U.. ( 2012;). Nutritional influences on skatole formation and skatole metabolism in the pig. . Animals 2:, 221–242. [CrossRef]
    [Google Scholar]
  55. Wikoff W. R., Anfora A. T., Liu J., Schultz P. G., Lesley S. A., Peters E. C., Siuzdak G.. ( 2009;). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. . Proc Natl Acad Sci U S A 106:, 3698–3703. [CrossRef][PubMed]
    [Google Scholar]
  56. Yanofsky C., Horn V., Gollnick P.. ( 1991;). Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. . J Bacteriol 173:, 6009–6017.[PubMed]
    [Google Scholar]
  57. Zheng X., Xie G., Zhao A., Zhao L., Yao C., Chiu N. H., Zhou Z., Bao Y., Jia W.. & other authors ( 2011;). The footprints of gut microbial–mammalian co-metabolism. . J Proteome Res 10:, 5512–5522. [CrossRef][PubMed]
    [Google Scholar]
  58. Zuccato E., Venturi M., Di Leo G., Colombo L., Bertolo C., Doldi S. B., Mussini E.. ( 1993;). Role of bile acids and metabolic activity of colonic bacteria in increased risk of colon cancer after cholecystectomy. . Dig Dis Sci 38:, 514–519. [CrossRef][PubMed]
    [Google Scholar]
  59. Zúñiga R., Salazar J., Canales M., Orellana O.. ( 2002;). A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding. . FEBS Lett 532:, 387–390. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064139-0
Loading
/content/journal/micro/10.1099/mic.0.064139-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error