1887

Abstract

Human milk is a rich source of nutrients and energy, shaped by mammalian evolution to provide all the nutritive requirements of the newborn. In addition, several molecules in breast milk act as bioactive agents, playing an important role in infant protection and guiding a proper development. While major breast milk nutrients such as lactose, lipids and proteins are readily digested and consumed by the infant, other molecules, such as human milk oligosaccharides and glycosylated proteins and lipids, can escape intestinal digestion and transit through the gastrointestinal tract. In this environment, these molecules guide the composition of the developing infant intestinal microbiota by preventing the colonization of enteric pathogens and providing carbon and nitrogen sources for other colonic commensals. Only a few bacteria, in particular species, can gain access to the energetic content of milk as it is displayed in the colon, probably contributing to their predominance in the intestinal microbiota in the first year of life. Bifidobacteria deploy exquisite molecular mechanisms to utilize human milk oligosaccharides, and recent evidence indicates that their activities also target other human milk glycoconjugates. Here, we review advances in our understanding of how these microbes have been shaped by breast milk components and the strategies associated with their consumption of milk glycoconjugates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064113-0
2013-04-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/649.html?itemId=/content/journal/micro/10.1099/mic.0.064113-0&mimeType=html&fmt=ahah

References

  1. Adlerberth I., Lindberg E., Aberg N., Hesselmar B., Saalman R., Strannegård I. L., Wold A. E.. ( 2006;). Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle?. Pediatr Res59:96–101 [CrossRef][PubMed]
    [Google Scholar]
  2. Albrecht S., Schols H. A., van den Heuvel E. G., Voragen A. G., Gruppen H.. ( 2011;). Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res346:2540–2550 [CrossRef][PubMed]
    [Google Scholar]
  3. Allen J. C., Keller R. P., Archer P., Neville M. C.. ( 1991;). Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr54:69–80[PubMed]
    [Google Scholar]
  4. American Academy of Pediatrics Section on Breastfeeding ( 2012;). Breastfeeding and the use of human milk. Pediatrics129:e827–e841 [CrossRef][PubMed]
    [Google Scholar]
  5. Asakuma S., Hatakeyama E., Urashima T., Yoshida E., Katayama T., Yamamoto K., Kumagai H., Ashida H., Hirose J., Kitaoka M.. ( 2011;). Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem286:34583–34592 [CrossRef][PubMed]
    [Google Scholar]
  6. Ashida H., Maki R., Ozawa H., Tani Y., Kiyohara M., Fujita M., Imamura A., Ishida H., Kiso M., Yamamoto K.. ( 2008;). Characterization of two different endo-α-N-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens . Glycobiology18:727–734 [CrossRef][PubMed]
    [Google Scholar]
  7. Ashida H., Miyake A., Kiyohara M., Wada J., Yoshida E., Kumagai H., Katayama T., Yamamoto K.. ( 2009;). Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology19:1010–1017 [CrossRef][PubMed]
    [Google Scholar]
  8. Avershina E., Storrø O., Oien T., Johnsen R., Wilson R., Egeland T., Rudi K.. ( 2013;). Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol79:497–507 [CrossRef][PubMed]
    [Google Scholar]
  9. Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I.. ( 2005;). Host-bacterial mutualism in the human intestine. Science307:1915–1920 [CrossRef][PubMed]
    [Google Scholar]
  10. Bager P., Wohlfahrt J., Westergaard T.. ( 2008;). Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy38:634–642 [CrossRef][PubMed]
    [Google Scholar]
  11. Bakker-Zierikzee A. M., Alles M. S., Knol J., Kok F. J., Tolboom J. J., Bindels J. G.. ( 2005;). Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr94:783–790 [CrossRef][PubMed]
    [Google Scholar]
  12. Barboza M., Sela D. A., Pirim C., Locascio R. G., Freeman S. L., German J. B., Mills D. A., Lebrilla C. B.. ( 2009;). Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl Environ Microbiol75:7319–7325 [CrossRef][PubMed]
    [Google Scholar]
  13. Barboza M., Pinzon J., Wickramasinghe S., Froehlich J. W., Moeller I., Smilowitz J. T., Ruhaak L. R., Huang J., Lönnerdal B.. & other authors ( 2012;). Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol Cell Proteomics11:015248[PubMed][CrossRef]
    [Google Scholar]
  14. Barile D., Marotta M., Chu C., Mehra R., Grimm R., Lebrilla C. B., German J. B.. ( 2010;). Neutral and acidic oligosaccharides in Holstein-Friesian colostrum during the first 3 days of lactation measured by high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J Dairy Sci93:3940–3949 [CrossRef][PubMed]
    [Google Scholar]
  15. Bode L., Jantscher-Krenn E.. ( 2012;). Structure-function relationships of human milk oligosaccharides. Adv Nutr3:383S–391S[PubMed][CrossRef]
    [Google Scholar]
  16. Boesten R., Schuren F., Ben Amor K., Haarman M., Knol J., de Vos W. M.. ( 2011;). Bifidobacterium population analysis in the infant gut by direct mapping of genomic hybridization patterns: potential for monitoring temporal development and effects of dietary regimens. Microb Biotechnol4:417–427 [CrossRef][PubMed]
    [Google Scholar]
  17. Bouhours J. F., Bouhours D.. ( 1979;). Galactosylceramide is the major cerebroside of human milk fat globule membrane. Biochem Biophys Res Commun88:1217–1222 [CrossRef][PubMed]
    [Google Scholar]
  18. Brockhausen I., Schachter H., Stanley P.. ( 2009;). O-GalNAc glycans. Essentials of Glycobiology, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Brunser O., Gotteland M., Cruchet S., Figueroa G., Garrido D., Steenhout P.. ( 2006;). Effect of a milk formula with prebiotics on the intestinal microbiota of infants after an antibiotic treatment. Pediatr Res59:451–456 [CrossRef][PubMed]
    [Google Scholar]
  20. Cabrera-Rubio R., Collado M. C., Laitinen K., Salminen S., Isolauri E., Mira A.. ( 2012;). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr96:544–551 [CrossRef][PubMed]
    [Google Scholar]
  21. Chaturvedi P., Warren C. D., Buescher C. R., Pickering L. K., Newburg D. S.. ( 2001;). Survival of human milk oligosaccharides in the intestine of infants. Adv Exp Med Biol501:315–323 [CrossRef][PubMed]
    [Google Scholar]
  22. Chen J., Cai W., Feng Y.. ( 2007;). Development of intestinal bifidobacteria and lactobacilli in breast-fed neonates. Clin Nutr26:559–566 [CrossRef][PubMed]
    [Google Scholar]
  23. Chichlowski M., De Lartigue G., German J. B., Raybould H. E., Mills D. A.. ( 2012;). Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr55:321–327 [CrossRef][PubMed]
    [Google Scholar]
  24. Cho I., Yamanishi S., Cox L., Methé B. A., Zavadil J., Li K., Gao Z., Mahana D., Raju K.. & other authors ( 2012;). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature488:621–626 [CrossRef][PubMed]
    [Google Scholar]
  25. Collado M. C., Laitinen K., Salminen S., Isolauri E.. ( 2012;). Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res72:77–85 [CrossRef][PubMed]
    [Google Scholar]
  26. Coppa G. V., Pierani P., Zampini L., Carloni I., Carlucci A., Gabrielli O.. ( 1999;). Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl88:89–94 [CrossRef][PubMed]
    [Google Scholar]
  27. Coppa G. V., Zampini L., Galeazzi T., Facinelli B., Ferrante L., Capretti R., Orazio G.. ( 2006;). Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris . Pediatr Res59:377–382 [CrossRef][PubMed]
    [Google Scholar]
  28. Corfield A. P., Wagner S. A., Clamp J. R., Kriaris M. S., Hoskins L. C.. ( 1992;). Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun60:3971–3978[PubMed]
    [Google Scholar]
  29. Crociani F., Alessandrini A., Mucci M. M., Biavati B.. ( 1994;). Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol24:199–210 [CrossRef][PubMed]
    [Google Scholar]
  30. Dallas D. C., Martin W. F., Strum J. S., Zivkovic A. M., Smilowitz J. T., Underwood M. A., Affolter M., Lebrilla C. B., German J. B.. ( 2011;). N-Linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agric Food Chem59:4255–4263 [CrossRef][PubMed]
    [Google Scholar]
  31. Dallas D. C., Sela D., Underwood M. A., German J. B., Lebrilla C. B.. ( 2012;). Protein-linked glycan degradation in infants fed human milk. J Glycomics LipidomicsS1:002
    [Google Scholar]
  32. Davidson L. A., Lönnerdal B.. ( 1987;). Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand76:733–740 [CrossRef][PubMed]
    [Google Scholar]
  33. Davis L. M., Martínez I., Walter J., Goin C., Hutkins R. W.. ( 2011;). Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE6:e25200 [CrossRef][PubMed]
    [Google Scholar]
  34. De Leoz M. L., Gaerlan S. C., Strum J. S., Dimapasoc L. M., Mirmiran M., Tancredi D. J., Smilowitz J. T., Kalanetra K. M., Mills D. A.. & other authors ( 2012;). Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res11:4662–4672 [CrossRef][PubMed]
    [Google Scholar]
  35. Derrien M., van Passel M. W., van de Bovenkamp J. H., Schipper R. G., de Vos W. M., Dekker J.. ( 2010;). Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes1:254–268 [CrossRef][PubMed]
    [Google Scholar]
  36. Dewey K. G., Heinig M. J., Nommsen-Rivers L. A.. ( 1995;). Differences in morbidity between breast-fed and formula-fed infants. J Pediatr126:696–702 [CrossRef][PubMed]
    [Google Scholar]
  37. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.. ( 2010;). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A107:11971–11975 [CrossRef][PubMed]
    [Google Scholar]
  38. Engfer M. B., Stahl B., Finke B., Sawatzki G., Daniel H.. ( 2000;). Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr71:1589–1596[PubMed]
    [Google Scholar]
  39. Falk P., Hoskins L. C., Larson G.. ( 1990;). Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J Biochem108:466–474[PubMed]
    [Google Scholar]
  40. Falk P., Hoskins L. C., Larson G.. ( 1991;). Enhancing effects of bile salts on the degradation of glycosphingolipids by glycosidases from bacteria of the human fecal flora. Biochim Biophys Acta1084:139–148 [CrossRef][PubMed]
    [Google Scholar]
  41. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., Aguilera M., Khanna S., Gil A.. & other authors ( 2010;). Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr51:77–84 [CrossRef][PubMed]
    [Google Scholar]
  42. Fewtrell M. S., Morgan J. B., Duggan C., Gunnlaugsson G., Hibberd P. L., Lucas A., Kleinman R. E.. ( 2007;). Optimal duration of exclusive breastfeeding: what is the evidence to support current recommendations?. Am J Clin Nutr85:635S–638S[PubMed]
    [Google Scholar]
  43. Froehlich J. W., Dodds E. D., Barboza M., McJimpsey E. L., Seipert R. R., Francis J., An H. J., Freeman S., German J. B., Lebrilla C. B.. ( 2010;). Glycoprotein expression in human milk during lactation. J Agric Food Chem58:6440–6448 [CrossRef][PubMed]
    [Google Scholar]
  44. Fujita K., Oura F., Nagamine N., Katayama T., Hiratake J., Sakata K., Kumagai H., Yamamoto K.. ( 2005;). Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum . J Biol Chem280:37415–37422 [CrossRef][PubMed]
    [Google Scholar]
  45. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J. M., Topping D. L.. & other authors ( 2011;). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature469:543–547 [CrossRef][PubMed]
    [Google Scholar]
  46. Garrido D., Kim J. H., German J. B., Raybould H. E., Mills D. A.. ( 2011;). Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS ONE6:e17315 [CrossRef][PubMed]
    [Google Scholar]
  47. Garrido D., Barile D., Mills D. A.. ( 2012a;). A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr3:415S–421S[PubMed][CrossRef]
    [Google Scholar]
  48. Garrido D., Nwosu C., Ruiz-Moyano S., Aldredge D., German J. B., Lebrilla C. B., Mills D. A.. ( 2012b;). Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics11:775–785 [CrossRef][PubMed]
    [Google Scholar]
  49. Garrido D., Ruiz-Moyano S., Mills D. A.. ( 2012c;). Release and utilization of N-acetyl-d-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis . Anaerobe18:430–435 [CrossRef][PubMed]
    [Google Scholar]
  50. Garrido D., Ruiz-Moyano S., Jimenez-Espinoza R., Eom H. J., Block D. E., Mills D. A.. ( 2013;). Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol33:262–270 [CrossRef][PubMed]
    [Google Scholar]
  51. Gdalevich M., Mimouni D., David M., Mimouni M.. ( 2001;). Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol45:520–527 [CrossRef][PubMed]
    [Google Scholar]
  52. Gibson G. R., Probert H. M., Loo J. V., Rastall R. A., Roberfroid M. B.. ( 2004;). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev17:259–275 [CrossRef][PubMed]
    [Google Scholar]
  53. Gnoth M. J., Kunz C., Kinne-Saffran E., Rudloff S.. ( 2000;). Human milk oligosaccharides are minimally digested in vitro. J Nutr130:3014–3020[PubMed]
    [Google Scholar]
  54. Gomes A. M., Malcata F. X., Klaver F. A.. ( 1998;). Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates. J Dairy Sci81:2817–2825 [CrossRef][PubMed]
    [Google Scholar]
  55. González R., Klaassens E. S., Malinen E., de Vos W. M., Vaughan E. E.. ( 2008;). Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol74:4686–4694 [CrossRef][PubMed]
    [Google Scholar]
  56. Gopal P. K., Gill H. S.. ( 2000;). Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br J Nutr84:Suppl. 1S69–S74 [CrossRef][PubMed]
    [Google Scholar]
  57. Gordon J. I., Dewey K. G., Mills D. A., Medzhitov R. M.. ( 2012;). The human gut microbiota and undernutrition. Sci Transl Med4:37ps12[PubMed][CrossRef]
    [Google Scholar]
  58. Grönlund M. M., Gueimonde M., Laitinen K., Kociubinski G., Grönroos T., Salminen S., Isolauri E.. ( 2007;). Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy37:1764–1772 [CrossRef][PubMed]
    [Google Scholar]
  59. Gustafsson B. E., Karlsson K. A., Larson G., Midtvedt T., Strömberg N., Teneberg S., Thurin J.. ( 1986;). Glycosphingolipid patterns of the gastrointestinal tract and feces of germ-free and conventional rats. J Biol Chem261:15294–15300[PubMed]
    [Google Scholar]
  60. Haarman M., Knol J.. ( 2005;). Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol71:2318–2324 [CrossRef][PubMed]
    [Google Scholar]
  61. Hakkarainen J., Toivanen M., Leinonen A., Frängsmyr L., Strömberg N., Lapinjoki S., Nassif X., Tikkanen-Kaukanen C.. ( 2005;). Human and bovine milk oligosaccharides inhibit Neisseria meningitidis pili attachment in vitro. J Nutr135:2445–2448[PubMed]
    [Google Scholar]
  62. Hamosh M.. ( 2001;). Bioactive factors in human milk. Pediatr Clin North Am48:69–86 [CrossRef][PubMed]
    [Google Scholar]
  63. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W.. ( 2000;). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr30:61–67 [CrossRef][PubMed]
    [Google Scholar]
  64. Harris K., Kassis A., Major G., Chou C. J.. ( 2012;). Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?. J Obes2012:879151[PubMed]
    [Google Scholar]
  65. Håversen L., Ohlsson B. G., Hahn-Zoric M., Hanson L. A., Mattsby-Baltzer I.. ( 2002;). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunol220:83–95 [CrossRef][PubMed]
    [Google Scholar]
  66. Hernell O.. ( 2011;). Human milk vs. cow’s milk and the evolution of infant formulas. Nestle Nutr Workshop Ser Pediatr Program67:17–28 [CrossRef][PubMed]
    [Google Scholar]
  67. Hong P., Ninonuevo M. R., Lee B., Lebrilla C., Bode L.. ( 2009;). Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br J Nutr101:482–486 [CrossRef][PubMed]
    [Google Scholar]
  68. Hooper L. V., Littman D. R., Macpherson A. J.. ( 2012;). Interactions between the microbiota and the immune system. Science336:1268–1273 [CrossRef][PubMed]
    [Google Scholar]
  69. Hoskins L. C., Agustines M., McKee W. B., Boulding E. T., Kriaris M., Niedermeyer G.. ( 1985;). Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest75:944–953 [CrossRef][PubMed]
    [Google Scholar]
  70. Imberty A., Varrot A.. ( 2008;). Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol18:567–576 [CrossRef][PubMed]
    [Google Scholar]
  71. Jakobsson I., Lindberg T., Benediktsson B.. ( 1982;). In vitro digestion of cow’s milk proteins by duodenal juice from infants with various gastrointestinal disorders. J Pediatr Gastroenterol Nutr1:183–192 [CrossRef][PubMed]
    [Google Scholar]
  72. Janer C., Pelaez C., Requena T.. ( 2004;). Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chem86:263–267 [CrossRef]
    [Google Scholar]
  73. Jensen R. G.. ( 1999;). Lipids in human milk. Lipids34:1243–1271 [CrossRef][PubMed]
    [Google Scholar]
  74. Jollès P., Jollès J.. ( 1961;). Lysozyme from human milk. Nature192:1187–1188 [CrossRef][PubMed]
    [Google Scholar]
  75. Jost T., Lacroix C., Braegger C. P., Chassard C.. ( 2012;). New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE7:e44595 [CrossRef][PubMed]
    [Google Scholar]
  76. Kalliomäki M., Collado M. C., Salminen S., Isolauri E.. ( 2008;). Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr87:534–538[PubMed]
    [Google Scholar]
  77. Kitaoka M., Tian J., Nishimoto M.. ( 2005;). Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum . Appl Environ Microbiol71:3158–3162 [CrossRef][PubMed]
    [Google Scholar]
  78. Kiyohara M., Tanigawa K., Chaiwangsri T., Katayama T., Ashida H., Yamamoto K.. ( 2011;). An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology21:437–447 [CrossRef][PubMed]
    [Google Scholar]
  79. Kiyohara M., Nakatomi T., Kurihara S., Fushinobu S., Suzuki H., Tanaka T., Shoda S., Kitaoka M., Katayama T.. & other authors ( 2012;). α-N-Acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J Biol Chem287:693–700 [CrossRef][PubMed]
    [Google Scholar]
  80. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., Ley R. E.. ( 2011;). Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A108:Suppl. 14578–4585 [CrossRef][PubMed]
    [Google Scholar]
  81. Koletzko B.. ( 2010;). Innovations in infant milk feeding: from the past to the future. Nestle Nutr Workshop Ser Pediatr Program66:1–17 [CrossRef][PubMed]
    [Google Scholar]
  82. Kunz C.. ( 2012;). Historical aspects of human milk oligosaccharides. Adv Nutr3:430S–439S[PubMed][CrossRef]
    [Google Scholar]
  83. Kunz C., Rudloff S., Baier W., Klein N., Strobel S.. ( 2000;). Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr20:699–722 [CrossRef][PubMed]
    [Google Scholar]
  84. Laegreid A., Kolstø Otnaess A. B., Bryn K.. ( 1986;). Purification of human milk gangliosides by silica gel chromatography and analysis of trifluoroacetate derivatives by gas chromatography. J Chromatogr A377:59–67[PubMed][CrossRef]
    [Google Scholar]
  85. Larson G., Midtvedt T.. ( 1989;). Glycosphingolipids in feces of germ-free rats as a source for studies of developmental changes of intestinal epithelial cell surface carbohydrates. Glycoconj J6:285–292 [CrossRef][PubMed]
    [Google Scholar]
  86. Larson G., Watsfeldt P., Falk P., Leffler H., Koprowski H.. ( 1987;). Fecal excretion of intestinal glycosphingolipids by newborns and young children. FEBS Lett214:41–44 [CrossRef][PubMed]
    [Google Scholar]
  87. Larson G., Falk P., Hoskins L. C.. ( 1988;). Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem263:10790–10798[PubMed]
    [Google Scholar]
  88. Le T. T., Van de Wiele T., Do T. N., Debyser G., Struijs K., Devreese B., Dewettinck K., Van Camp J.. ( 2012;). Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J Dairy Sci95:2307–2318 [CrossRef][PubMed]
    [Google Scholar]
  89. Le Huërou-Luron I., Blat S., Boudry G.. ( 2010;). Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev23:23–36 [CrossRef][PubMed]
    [Google Scholar]
  90. Lee J. H., Karamychev V. N., Kozyavkin S. A., Mills D., Pavlov A. R., Pavlova N. V., Polouchine N. N., Richardson P. M., Shakhova V. V.. & other authors ( 2008;). Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics9:247 [CrossRef][PubMed]
    [Google Scholar]
  91. Lee H., An H. J., Lerno L. A. Jr, German J. B., Lebrilla C. B.. ( 2011;). Rapid profiling of bovine and human milk gangliosides by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom305:138–150 [CrossRef][PubMed]
    [Google Scholar]
  92. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I.. ( 2005;). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A102:11070–11075 [CrossRef][PubMed]
    [Google Scholar]
  93. Lindberg A. A., Brown J. E., Strömberg N., Westling-Ryd M., Schultz J. E., Karlsson K. A.. ( 1987;). Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem262:1779–1785[PubMed]
    [Google Scholar]
  94. Lindh E.. ( 1975;). Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol114:284–286[PubMed]
    [Google Scholar]
  95. Lindquist S., Hernell O.. ( 2010;). Lipid digestion and absorption in early life: an update. Curr Opin Clin Nutr Metab Care13:314–320 [CrossRef][PubMed]
    [Google Scholar]
  96. LoCascio R. G., Ninonuevo M. R., Freeman S. L., Sela D. A., Grimm R., Lebrilla C. B., Mills D. A., German J. B.. ( 2007;). Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem55:8914–8919 [CrossRef][PubMed]
    [Google Scholar]
  97. LoCascio R. G., Niñonuevo M. R., Kronewitter S. R., Freeman S. L., German J. B., Lebrilla C. B., Mills D. A.. ( 2009;). A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb Biotechnol2:333–342 [CrossRef][PubMed]
    [Google Scholar]
  98. LoCascio R. G., Desai P., Sela D. A., Weimer B., Mills D. A.. ( 2010;). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol76:7373–7381 [CrossRef][PubMed]
    [Google Scholar]
  99. Lönnerdal B.. ( 2009;). Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care12:293–297 [CrossRef][PubMed]
    [Google Scholar]
  100. Lönnerdal B.. ( 2010;). Bioactive proteins in human milk: mechanisms of action. J Pediatr156:Suppl.S26–S30 [CrossRef][PubMed]
    [Google Scholar]
  101. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., Oishi K., Martin R., Ben Amor K.. & other authors ( 2011;). Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol77:6788–6793 [CrossRef][PubMed]
    [Google Scholar]
  102. Mangin I., Suau A., Magne F., Garrido D., Gotteland M., Neut C., Pochart P.. ( 2006;). Characterization of human intestinal bifidobacteria using competitive PCR and PCR-TTGE. FEMS Microbiol Ecol55:28–37 [CrossRef][PubMed]
    [Google Scholar]
  103. Marcobal A., Barboza M., Froehlich J. W., Block D. E., German J. B., Lebrilla C. B., Mills D. A.. ( 2010;). Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem58:5334–5340 [CrossRef][PubMed]
    [Google Scholar]
  104. Marcobal A., Barboza M., Sonnenburg E. D., Pudlo N., Martens E. C., Desai P., Lebrilla C. B., Weimer B. C., Mills D. A.. & other authors ( 2011;). Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe10:507–514 [CrossRef][PubMed]
    [Google Scholar]
  105. Martens E. C., Roth R., Heuser J. E., Gordon J. I.. ( 2009;). Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem284:18445–18457 [CrossRef][PubMed]
    [Google Scholar]
  106. Martín-Sosa S., Martín M. J., Hueso P.. ( 2002;). The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr132:3067–3072[PubMed]
    [Google Scholar]
  107. Martirosian G., Kuipers S., Verbrugh H., van Belkum A., Meisel-Mikolajczyk F.. ( 1995;). PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital. J Clin Microbiol33:2016–2021[PubMed]
    [Google Scholar]
  108. Matsuki T., Watanabe K., Fujimoto J., Miyamoto Y., Takada T., Matsumoto K., Oyaizu H., Tanaka R.. ( 2002;). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol68:5445–5451 [CrossRef][PubMed]
    [Google Scholar]
  109. Mayer E. J., Hamman R. F., Gay E. C., Lezotte D. C., Savitz D. A., Klingensmith G. J.. ( 1988;). Reduced risk of IDDM among breast-fed children. The Colorado IDDM Registry. Diabetes37:1625–1632 [CrossRef][PubMed]
    [Google Scholar]
  110. Midtvedt T., Carlstedt-Duke B., Höverstad T., Midtvedt A. C., Norin K. E., Saxerholt H.. ( 1987;). Establishment of a biochemically active intestinal ecosystem in ex-germfree rats. Appl Environ Microbiol53:2866–2871[PubMed]
    [Google Scholar]
  111. Midtvedt A. C., Carlstedt-Duke B., Norin K. E., Saxerholt H., Midtvedt T.. ( 1988;). Development of five metabolic activities associated with the intestinal microflora of healthy infants. J Pediatr Gastroenterol Nutr7:559–567 [CrossRef][PubMed]
    [Google Scholar]
  112. Miller-Podraza H., Lanne B., Angström J., Teneberg S., Milh M. A., Jovall P. A., Karlsson H., Karlsson K. A.. ( 2005;). Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J Biol Chem280:19695–19703 [CrossRef][PubMed]
    [Google Scholar]
  113. Mitoulas L. R., Kent J. C., Cox D. B., Owens R. A., Sherriff J. L., Hartmann P. E.. ( 2002;). Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br J Nutr88:29–37 [CrossRef][PubMed]
    [Google Scholar]
  114. Mitsou E. K., Kirtzalidou E., Oikonomou I., Liosis G., Kyriacou A.. ( 2008;). Fecal microflora of Greek healthy neonates. Anaerobe14:94–101 [CrossRef][PubMed]
    [Google Scholar]
  115. Miwa M., Horimoto T., Kiyohara M., Katayama T., Kitaoka M., Ashida H., Yamamoto K.. ( 2010;). Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology20:1402–1409 [CrossRef][PubMed]
    [Google Scholar]
  116. Moro E.. ( 1905;). Morphologische und biologische Untersuchung über die Darmbakterien des Säuglings. Jahrb f Kinderh61:687–734
    [Google Scholar]
  117. Morrow A. L., Ruiz-Palacios G. M., Altaye M., Jiang X., Guerrero M. L., Meinzen-Derr J. K., Farkas T., Chaturvedi P., Pickering L. K., Newburg D. S.. ( 2004;). Human milk oligosaccharide blood group epitopes and innate immune protection against Campylobacter and calicivirus diarrhea in breastfed infants. Adv Exp Med Biol554:443–446[PubMed]
    [Google Scholar]
  118. Morrow A. L., Ruiz-Palacios G. M., Jiang X., Newburg D. S.. ( 2005;). Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr135:1304–1307[PubMed]
    [Google Scholar]
  119. Mukai T., Kaneko S., Matsumoto M., Ohori H.. ( 2004;). Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol90:357–362 [CrossRef][PubMed]
    [Google Scholar]
  120. Neeser J. R., Granato D., Rouvet M., Servin A., Teneberg S., Karlsson K. A.. ( 2000;). Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology10:1193–1199 [CrossRef][PubMed]
    [Google Scholar]
  121. Neu J.. ( 2007;). Gastrointestinal development and meeting the nutritional needs of premature infants. Am J Clin Nutr85:629S–634S[PubMed]
    [Google Scholar]
  122. Newburg D. S.. ( 2009;). Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci87:Suppl.26–34 [CrossRef][PubMed]
    [Google Scholar]
  123. Newburg D. S., Chaturvedi P.. ( 1992;). Neutral glycolipids of human and bovine milk. Lipids27:923–927 [CrossRef][PubMed]
    [Google Scholar]
  124. Newburg D. S., Ruiz-Palacios G. M., Altaye M., Chaturvedi P., Meinzen-Derr J., Guerrero M. L., Morrow A. L.. ( 2004;). Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology14:253–263 [CrossRef][PubMed]
    [Google Scholar]
  125. Newburg D. S., Ruiz-Palacios G. M., Morrow A. L.. ( 2005;). Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr25:37–58 [CrossRef][PubMed]
    [Google Scholar]
  126. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S.. ( 2012;). Host-gut microbiota metabolic interactions. Science336:1262–1267 [CrossRef][PubMed]
    [Google Scholar]
  127. Niñonuevo M. R., Perkins P. D., Francis J., Lamotte L. M., LoCascio R. G., Freeman S. L., Mills D. A., German J. B., Grimm R., Lebrilla C. B.. ( 2008;). Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J Agric Food Chem56:618–626 [CrossRef][PubMed]
    [Google Scholar]
  128. Nishimoto M., Kitaoka M.. ( 2007;). Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum . Appl Environ Microbiol73:6444–6449 [CrossRef][PubMed]
    [Google Scholar]
  129. Nwosu C. C., Seipert R. R., Strum J. S., Hua S. S., An H. J., Zivkovic A. M., German B. J., Lebrilla C. B.. ( 2011;). Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J Proteome Res10:2612–2624 [CrossRef][PubMed]
    [Google Scholar]
  130. Nwosu C. C., Aldredge D. L., Lee H., Lerno L. A., Zivkovic A. M., German J. B., Lebrilla C. B.. ( 2012;). Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res11:2912–2924 [CrossRef][PubMed]
    [Google Scholar]
  131. O’Connell Motherway M., Fitzgerald G. F., van Sinderen D.. ( 2011a;). Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol4:403–416 [CrossRef][PubMed]
    [Google Scholar]
  132. O’Connell Motherway M., Zomer A., Leahy S. C., Reunanen J., Bottacini F., Claesson M. J., O’Brien F., Flynn K., Casey P. G.. & other authors ( 2011b;). Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A108:11217–11222 [CrossRef][PubMed]
    [Google Scholar]
  133. Otnaess A. B., Laegreid A., Ertresvåg K.. ( 1983;). Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk. Infect Immun40:563–569[PubMed]
    [Google Scholar]
  134. Owen C. G., Martin R. M., Whincup P. H., Smith G. D., Cook D. G.. ( 2006;). Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr84:1043–1054[PubMed]
    [Google Scholar]
  135. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I., van den Brandt P. A., Stobberingh E. E.. ( 2006;). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics118:511–521 [CrossRef][PubMed]
    [Google Scholar]
  136. Peterson J. A., Patton S., Hamosh M.. ( 1998;). Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol Neonate74:143–162 [CrossRef][PubMed]
    [Google Scholar]
  137. Petherick A.. ( 2010;). Development: mother’s milk: a rich opportunity. Nature468:S5–S7 [CrossRef][PubMed]
    [Google Scholar]
  138. Petschow B. W., Talbott R. D.. ( 1990;). Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. J Clin Microbiol28:287–292[PubMed]
    [Google Scholar]
  139. Pettitt D. J., Forman M. R., Hanson R. L., Knowler W. C., Bennett P. H.. ( 1997;). Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet350:166–168 [CrossRef][PubMed]
    [Google Scholar]
  140. Picciano M. F.. ( 2001;). Nutrient composition of human milk. Pediatr Clin North Am48:53–67 [CrossRef][PubMed]
    [Google Scholar]
  141. Polonowski M., Lespagnol A.. ( 1931;). Sur deux nouveaux sucres du lait de femme, le gynolactose et l’allolactose. C R Acad Sci192:1319
    [Google Scholar]
  142. Prentice A., MacCarthy A., Stirling D. M., Vasquez-Velasquez L., Ceesay S. M.. ( 1989;). Breast-milk IgA and lactoferrin survival in the gastrointestinal tract – a study in rural Gambian children. Acta Paediatr Scand78:505–512 [CrossRef][PubMed]
    [Google Scholar]
  143. Reinhardt C., Reigstad C. S., Bäckhed F.. ( 2009;). Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr48:249–256 [CrossRef][PubMed]
    [Google Scholar]
  144. Roger L. C., McCartney A. L.. ( 2010;). Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology156:3317–3328 [CrossRef][PubMed]
    [Google Scholar]
  145. Ruas-Madiedo P., Gueimonde M., Fernández-García M., de los Reyes-Gavilán C. G., Margolles A.. ( 2008;). Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol74:1936–1940 [CrossRef][PubMed]
    [Google Scholar]
  146. Rudd P. M., Joao H. C., Coghill E., Fiten P., Saunders M. R., Opdenakker G., Dwek R. A.. ( 1994;). Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry33:17–22 [CrossRef][PubMed]
    [Google Scholar]
  147. Rudloff S., Kunz C.. ( 2012;). Milk oligosaccharides and metabolism in infants. Adv Nutr3:398S–405S[PubMed][CrossRef]
    [Google Scholar]
  148. Ruhaak L. R., Lebrilla C. B.. ( 2012;). Advances in analysis of human milk oligosaccharides. Adv Nutr3:406S–414S[PubMed][CrossRef]
    [Google Scholar]
  149. Ruiz-Palacios G. M., Cervantes L. E., Ramos P., Chavez-Munguia B., Newburg D. S.. ( 2003;). Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem278:14112–14120 [CrossRef][PubMed]
    [Google Scholar]
  150. Sakata S., Tonooka T., Ishizeki S., Takada M., Sakamoto M., Fukuyama M., Benno Y.. ( 2005;). Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol Lett243:417–423 [CrossRef][PubMed]
    [Google Scholar]
  151. Salvini F., Riva E., Salvatici E., Boehm G., Jelinek J., Banderali G., Giovannini M.. ( 2011;). A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J Nutr141:1335–1339 [CrossRef][PubMed]
    [Google Scholar]
  152. Schell M. A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M. C., Desiere F., Bork P.. & other authors ( 2002;). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A99:14422–14427 [CrossRef][PubMed]
    [Google Scholar]
  153. Scholtens P. A., Oozeer R., Martin R., Amor K. B., Knol J.. ( 2012;). The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol3:425–447 [CrossRef][PubMed]
    [Google Scholar]
  154. Sela D. A., Mills D. A.. ( 2010;). Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol18:298–307 [CrossRef][PubMed]
    [Google Scholar]
  155. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., Lapidus A., Rokhsar D. S., Lebrilla C. B.. & other authors ( 2008;). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A105:18964–18969 [CrossRef][PubMed]
    [Google Scholar]
  156. Sela D. A., Price N. P., Mills D. A.. ( 2010;). Metabolism of bifidobacteria. Bifidobacteria: Genomics and Molecular Aspects45–70 Mayo B., van Sinderen D.. Norwich, UK: Caister Academic Press;
    [Google Scholar]
  157. Sela D. A., Li Y., Lerno L., Wu S., Marcobal A. M., German J. B., Chen X., Lebrilla C. B., Mills D. A.. ( 2011;). An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem286:11909–11918 [CrossRef][PubMed]
    [Google Scholar]
  158. Sela D. A., Garrido D., Lerno L., Wu S., Tan K., Eom H. J., Joachimiak A., Lebrilla C. B., Mills D. A.. ( 2012;). Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol78:795–803 [CrossRef][PubMed]
    [Google Scholar]
  159. Snijders B. E., Thijs C., Dagnelie P. C., Stelma F. F., Mommers M., Kummeling I., Penders J., van Ree R., van den Brandt P. A.. ( 2007;). Breast-feeding duration and infant atopic manifestations, by maternal allergic status, in the first 2 years of life (KOALA study). J Pediatr151:347–351, e1–e2 [CrossRef][PubMed]
    [Google Scholar]
  160. Stanley P., Schachter H., Taniguchi N.. ( 2009;). N-Glycans. Essentials of Glycobiology, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  161. Strömberg N., Ryd M., Lindberg A. A., Karlsson K.-A.. ( 1988;). Studies on the binding of bacteria to glycolipids. Two species of Propionibacterium apparently recognize separate epitopes on lactose of lactosylceramide. FEBS Lett232:193–198 [CrossRef][PubMed]
    [Google Scholar]
  162. Sundekilde U. K., Barile D., Meyrand M., Poulsen N. A., Larsen L. B., Lebrilla C. B., German J. B., Bertram H. C.. ( 2012;). Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds. J Agric Food Chem60:6188–6196 [CrossRef][PubMed]
    [Google Scholar]
  163. Tao N., DePeters E. J., Freeman S., German J. B., Grimm R., Lebrilla C. B.. ( 2008;). Bovine milk glycome. J Dairy Sci91:3768–3778 [CrossRef][PubMed]
    [Google Scholar]
  164. Tao N., Wu S., Kim J., An H. J., Hinde K., Power M. L., Gagneux P., German J. B., Lebrilla C. B.. ( 2011;). Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res10:1548–1557 [CrossRef][PubMed]
    [Google Scholar]
  165. Taufik E., Fukuda K., Senda A., Saito T., Williams C., Tilden C., Eisert R., Oftedal O., Urashima T.. ( 2012;). Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel’s sifaka and mongoose lemur. Glycoconj J29:119–134 [CrossRef][PubMed]
    [Google Scholar]
  166. Torres D. P. M., Gonçalves M. P. F., Teixeira J. A., Rodrigues L. R.. ( 2010;). Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety9:438–454 [CrossRef]
    [Google Scholar]
  167. Totten S. M., Zivkovic A. M., Wu S., Ngyuen U., Freeman S. L., Ruhaak L. R., Darboe M. K., German J. B., Prentice A. M., Lebrilla C. B.. ( 2012;). Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res11:6124–6133[PubMed]
    [Google Scholar]
  168. Turroni F., Bottacini F., Foroni E., Mulder I., Kim J. H., Zomer A., Sánchez B., Bidossi A., Ferrarini A.. & other authors ( 2010;). Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A107:19514–19519 [CrossRef][PubMed]
    [Google Scholar]
  169. Turroni F., Peano C., Pass D. A., Foroni E., Severgnini M., Claesson M. J., Kerr C., Hourihane J., Murray D.. & other authors ( 2012;). Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE7:e36957 [CrossRef][PubMed]
    [Google Scholar]
  170. Urashima T., Asakuma S., Leo F., Fukuda K., Messer M., Oftedal O. T.. ( 2012;). The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr3:473S–482S[PubMed][CrossRef]
    [Google Scholar]
  171. van Berkel P. H., Geerts M. E., van Veen H. A., Kooiman P. M., Pieper F. R., de Boer H. A., Nuijens J. H.. ( 1995;). Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J312:107–114[PubMed]
    [Google Scholar]
  172. Variyam E. P., Hoskins L. C.. ( 1981;). Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology81:751–758[PubMed]
    [Google Scholar]
  173. Wada J., Ando T., Kiyohara M., Ashida H., Kitaoka M., Yamaguchi M., Kumagai H., Katayama T., Yamamoto K.. ( 2008;). Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol74:3996–4004 [CrossRef][PubMed]
    [Google Scholar]
  174. Ward R. E., Niñonuevo M., Mills D. A., Lebrilla C. B., German J. B.. ( 2006;). In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri . Appl Environ Microbiol72:4497–4499 [CrossRef][PubMed]
    [Google Scholar]
  175. Wright D. P., Rosendale D. I., Robertson A. M.. ( 2000;). Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett190:73–79 [CrossRef][PubMed]
    [Google Scholar]
  176. Wu S., Tao N., German J. B., Grimm R., Lebrilla C. B.. ( 2010;). Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res9:4138–4151 [CrossRef][PubMed]
    [Google Scholar]
  177. Wu S., Grimm R., German J. B., Lebrilla C. B.. ( 2011;). Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res10:856–868 [CrossRef][PubMed]
    [Google Scholar]
  178. Xanthou M., Bines J., Walker W. A.. ( 1995;). Human milk and intestinal host defense in newborns: an update. Adv Pediatr42:171–208[PubMed]
    [Google Scholar]
  179. Xiao J. Z., Takahashi S., Nishimoto M., Odamaki T., Yaeshima T., Iwatsuki K., Kitaoka M.. ( 2010;). Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol76:54–59 [CrossRef][PubMed]
    [Google Scholar]
  180. Yamamoto K., Miwa T., Taniguchi H., Nagano T., Shimamura K., Tanaka T., Kumagai H.. ( 1996;). Binding specificity of Lactobacillus to glycolipids. Biochem Biophys Res Commun228:148–152 [CrossRef][PubMed]
    [Google Scholar]
  181. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N.. & other authors ( 2012;). Human gut microbiome viewed across age and geography. Nature486:222–227[PubMed]
    [Google Scholar]
  182. Ye A., Cui J., Singh H.. ( 2011;). Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J Dairy Sci94:2762–2770 [CrossRef][PubMed]
    [Google Scholar]
  183. Yoshida E., Sakurama H., Kiyohara M., Nakajima M., Kitaoka M., Ashida H., Hirose J., Katayama T., Yamamoto K., Kumagai H.. ( 2012;). Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology22:361–368 [CrossRef][PubMed]
    [Google Scholar]
  184. Yu T., Guo C., Wang J., Hao P., Sui S., Chen X., Zhang R., Wang P., Yu G.. & other authors ( 2011;). Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle. Glycobiology21:206–224 [CrossRef][PubMed]
    [Google Scholar]
  185. Zivkovic A. M., Barile D.. ( 2011;). Bovine milk as a source of functional oligosaccharides for improving human health. Adv Nutr2:284–289[PubMed][CrossRef]
    [Google Scholar]
  186. Zivkovic A. M., German J. B., Lebrilla C. B., Mills D. A.. ( 2011;). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A108:Suppl. 14653–4658 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064113-0
Loading
/content/journal/micro/10.1099/mic.0.064113-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error