1887

Abstract

Whole-genome microarray analysis of grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, and , encode cell-surface -type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome oxidoreductase complexes Cbc4 and Cbc5, periplasmic -type cytochromes Dhc2 and PccF, outer membrane -type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome oxidoreductase complexes Cbc3 and Cbc6, periplasmic -type cytochromes, including PccG and PccJ, and outer membrane -type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic -type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane -type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of -type cytochromes for extracellular electron transfer in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064089-0
2013-03-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/515.html?itemId=/content/journal/micro/10.1099/mic.0.064089-0&mimeType=html&fmt=ahah

References

  1. Afkar E., Reguera G., Schiffer M., Lovley D. R.. ( 2005;). A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. . BMC Microbiol 5:, 41. [CrossRef][PubMed]
    [Google Scholar]
  2. Aklujkar M., Haveman S. A., Didonato R. Jr, Chertkov O., Han C. S., Land M. L., Brown P., Lovley D. R.. ( 2012;). The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. . BMC Genomics 13:, 690. [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson R. T., Vrionis H. A., Ortiz-Bernad I., Resch C. T., Long P. E., Dayvault R., Karp K., Marutzky S., Metzler D. R.. & other authors ( 2003;). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. . Appl Environ Microbiol 69:, 5884–5891. [CrossRef][PubMed]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1997;). Current Protocols in Molecular Biology. New York:: John Wiley and Sons;.
    [Google Scholar]
  5. Barton L. L., Goulhen F., Bruschi M., Woodards N. A., Plunkett R. M., Rietmeijer F. J. M.. ( 2007;). The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. . Biometals 20:, 291–302. [CrossRef][PubMed]
    [Google Scholar]
  6. Bazylinski D. A., Dean A. J., Schüler D., Phillips E. J., Lovley D. R.. ( 2000;). N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. . Environ Microbiol 2:, 266–273. [CrossRef][PubMed]
    [Google Scholar]
  7. Beliaev A. S., Thompson D. K., Khare T., Lim H., Brandt C. C., Li G., Murray A. E., Heidelberg J. F., Giometti C. S.. & other authors ( 2002;). Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. . OMICS 6:, 39–60. [CrossRef][PubMed]
    [Google Scholar]
  8. Bergmann D. J., Zahn J. A., Hooper A. B., DiSpirito A. A.. ( 1998;). Cytochrome P460 genes from the methanotroph Methylococcus capsulatus Bath. . J Bacteriol 180:, 6440–6445.[PubMed]
    [Google Scholar]
  9. Bulen W. A., LeComte J. R.. ( 1966;). The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. . Proc Natl Acad Sci U S A 56:, 979–986. [CrossRef][PubMed]
    [Google Scholar]
  10. Butler J. E., Kaufmann F., Coppi M. V., Núñez C., Lovley D. R.. ( 2004;). MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. . J Bacteriol 186:, 4042–4045. [CrossRef][PubMed]
    [Google Scholar]
  11. Butler J. E., Glaven R. H., Esteve-Núñez A., Núñez C., Shelobolina E. S., Bond D. R., Lovley D. R.. ( 2006;). Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. . J Bacteriol 188:, 450–455. [CrossRef][PubMed]
    [Google Scholar]
  12. Butler J. E., Young N. D., Lovley D. R.. ( 2010;). Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. . BMC Genomics 11:, 40. [CrossRef][PubMed]
    [Google Scholar]
  13. Butler J. E., Young N. D., Aklujkar M., Lovley D. R.. ( 2012;). Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. . BMC Genomics 13:, 471. [CrossRef][PubMed]
    [Google Scholar]
  14. Childers S. E., Ciufo S., Lovley D. R.. ( 2002;). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. . Nature 416:, 767–769. [CrossRef][PubMed]
    [Google Scholar]
  15. Coppi M. V., Leang C., Sandler S. J., Lovley D. R.. ( 2001;). Development of a genetic system for Geobacter sulfurreducens. . Appl Environ Microbiol 67:, 3180–3187. [CrossRef][PubMed]
    [Google Scholar]
  16. Coppi M. V., O’Neil R. A., Lovley D. R.. ( 2004;). Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. . J Bacteriol 186:, 3022–3028. [CrossRef][PubMed]
    [Google Scholar]
  17. Coppi M. V., O’Neil R. A., Leang C., Kaufmann F., Methé B. A., Nevin K. P., Woodard T. L., Liu A., Lovley D. R.. ( 2007;). Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction. . Microbiology 153:, 3572–3585. [CrossRef][PubMed]
    [Google Scholar]
  18. Corstjens P. L. A. M., de Vrind J. P. M., Westbroek P., de Vrind-de Jong E. W.. ( 1992;). Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. . Appl Environ Microbiol 58:, 450–454.[PubMed]
    [Google Scholar]
  19. Ding Y. H. R., Hixson K. K., Giometti C. S., Stanley A., Esteve-Núñez A., Khare T., Tollaksen S. L., Zhu W. H., Adkins J. N.. & other authors ( 2006;). The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. . Biochim Biophys Acta 1764:, 1198–1206. [CrossRef][PubMed]
    [Google Scholar]
  20. Ding Y. H. R., Hixson K. K., Aklujkar M. A., Lipton M. S., Smith R. D., Lovley D. R., Mester T.. ( 2008;). Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. . Biochim Biophys Acta 1784:, 1935–1941. [CrossRef][PubMed]
    [Google Scholar]
  21. El Gheriany I. A., Bocioaga D., Hay A. G., Ghiorse W. C., Shuler M. L., Lion L. W.. ( 2009;). Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. . Appl Environ Microbiol 75:, 1229–1235. [CrossRef][PubMed]
    [Google Scholar]
  22. Elifantz H., N’Guessan L. A., Mouser P. J., Williams K. H., Wilkins M. J., Risso C., Holmes D. E., Long P. E., Lovley D. R.. ( 2010;). Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations. . FEMS Microbiol Ecol 73:, 441–449.[PubMed]
    [Google Scholar]
  23. Emanuelsson O., Brunak S., von Heijne G., Nielsen H.. ( 2007;). Locating proteins in the cell using TargetP, SignalP and related tools. . Nat Protoc 2:, 953–971. [CrossRef][PubMed]
    [Google Scholar]
  24. Enguita F. J., Martins L. O., Henriques A. O., Carrondo M. A.. ( 2003;). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. . J Biol Chem 278:, 19416–19425. [CrossRef][PubMed]
    [Google Scholar]
  25. Esteve-Núñez A., Sosnik J., Visconti P., Lovley D. R.. ( 2008;). Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. . Environ Microbiol 10:, 497–505. [CrossRef][PubMed]
    [Google Scholar]
  26. Filenko N. A., Browning D. F., Cole J. A.. ( 2005;). Transcriptional regulation of a hybrid cluster (prismane) protein. . Biochem Soc Trans 33:, 195–197. [CrossRef][PubMed]
    [Google Scholar]
  27. Gardy J. L., Spencer C., Wang K., Ester M., Tusnády G. E., Simon I., Hua S., deFays K., Lambert C.. & other authors ( 2003;). PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. . Nucleic Acids Res 31:, 3613–3617. [CrossRef][PubMed]
    [Google Scholar]
  28. Hageman R. V., Burris R. H.. ( 1978;). Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. . Proc Natl Acad Sci U S A 75:, 2699–2702. [CrossRef][PubMed]
    [Google Scholar]
  29. Hartshorne R. S., Reardon C. L., Ross D., Nuester J., Clarke T. A., Gates A. J., Mills P. C., Fredrickson J. K., Zachara J. M.. & other authors ( 2009;). Characterization of an electron conduit between bacteria and the extracellular environment. . Proc Natl Acad Sci U S A 106:, 22169–22174. [CrossRef][PubMed]
    [Google Scholar]
  30. Heitmann D., Einsle O.. ( 2005;). Structural and biochemical characterization of DHC2, a novel diheme cytochrome c from Geobacter sulfurreducens. . Biochemistry 44:, 12411–12419. [CrossRef][PubMed]
    [Google Scholar]
  31. Heitmann D., Einsle O.. ( 2008;). Pseudo-merohedral twinning in crystals of the dihaem c-type cytochrome DHC2 from Geobacter sulfurreducens. . Acta Crystallogr D Biol Crystallogr 64:, 993–999. [CrossRef][PubMed]
    [Google Scholar]
  32. Hofmann K., Stoffel W.. ( 1993;). TMbase-a database of membrane-spanning protein segments. . Biol Chem Hoppe Seyler 374:, 374.
    [Google Scholar]
  33. Holmes D. E., Nevin K. P., Lovley D. R.. ( 2004;). In situ expression of nifD in Geobacteraceae in subsurface sediments. . Appl Environ Microbiol 70:, 7251–7259. [CrossRef][PubMed]
    [Google Scholar]
  34. Holmes D. E., Mester T., O’Neil R. A., Perpetua L. A., Larrahondo M. J., Glaven R., Sharma M. L., Ward J. E., Nevin K. P., Lovley D. R.. ( 2008;). Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. . Microbiology 154:, 1422–1435. [CrossRef][PubMed]
    [Google Scholar]
  35. Holmes D. E., O’Neil R. A., Chavan M. A., N’Guessan L. A., Vrionis H. A., Perpetua L. A., Larrahondo M. J., DiDonato R., Liu A., Lovley D. R.. ( 2009;). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. . ISME J 3:, 216–230. [CrossRef][PubMed]
    [Google Scholar]
  36. Holmes D. E., Giloteaux L., Barlett M., Chavan M. A., Smith J. A., Williams K. H., Wilkins M., Long P., Lovley D. R.. ( 2012;). Molecular analysis of the in situ growth rate of subsurface Geobacter species. . Appl Environ Microbiol. (in press) [CrossRef][PubMed]
    [Google Scholar]
  37. Hullo M. F., Moszer I., Danchin A., Martin-Verstraete I.. ( 2001;). CotA of Bacillus subtilis is a copper-dependent laccase. . J Bacteriol 183:, 5426–5430. [CrossRef][PubMed]
    [Google Scholar]
  38. Inoue K., Qian X., Morgado L., Kim B. C., Mester T., Izallalen M., Salgueiro C. A., Lovley D. R.. ( 2010;). Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. . Appl Environ Microbiol 76:, 3999–4007. [CrossRef][PubMed]
    [Google Scholar]
  39. Inoue K., Leang C., Franks A. E., Woodard T. L., Nevin K. P., Lovley D. R.. ( 2011;). Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. . Environ Microbiol Rep 3:, 211–217. [CrossRef]
    [Google Scholar]
  40. Kern M., Simon J.. ( 2009;). Periplasmic nitrate reduction in Wolinella succinogenes: cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment. . Microbiology 155:, 2784–2794. [CrossRef][PubMed]
    [Google Scholar]
  41. Kern M., Volz J., Simon J.. ( 2011;). The oxidative and nitrosative stress defence network of Wolinella succinogenes: cytochrome c nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide. . Environ Microbiol 13:, 2478–2494. [CrossRef][PubMed]
    [Google Scholar]
  42. Kim B. C., Lovley D. R.. ( 2008;). Investigation of direct vs. indirect involvement of the c-type cytochrome MacA in Fe(III) reduction by Geobacter sulfurreducens. . FEMS Microbiol Lett 286:, 39–44. [CrossRef][PubMed]
    [Google Scholar]
  43. Kim B. C., Leang C., Ding Y. H. R., Glaven R. H., Coppi M. V., Lovley D. R.. ( 2005;). OmcF, a putative c-type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. . J Bacteriol 187:, 4505–4513. [CrossRef][PubMed]
    [Google Scholar]
  44. Kim B. C., Qian X. L., Leang C., Coppi M. V., Lovley D. R.. ( 2006;). Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. . J Bacteriol 188:, 3138–3142. [CrossRef][PubMed]
    [Google Scholar]
  45. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  46. Leang C., Coppi M. V., Lovley D. R.. ( 2003;). OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. . J Bacteriol 185:, 2096–2103. [CrossRef][PubMed]
    [Google Scholar]
  47. Leang C., Adams L. A., Chin K. J., Nevin K. P., Methé B. A., Webster J., Sharma M. L., Lovley D. R.. ( 2005;). Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens. . J Bacteriol 187:, 5918–5926. [CrossRef][PubMed]
    [Google Scholar]
  48. Leang C., Qian X., Mester T., Lovley D. R.. ( 2010;). Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. . Appl Environ Microbiol 76:, 4080–4084. [CrossRef][PubMed]
    [Google Scholar]
  49. Lin W. C., Coppi M. V., Lovley D. R.. ( 2004;). Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. . Appl Environ Microbiol 70:, 2525–2528. [CrossRef][PubMed]
    [Google Scholar]
  50. Lin B., Westerhoff H. V., Röling W. F.. ( 2009;). How Geobacteraceae may dominate subsurface biodegradation: physiology of Geobacter metallireducens in slow-growth habitat-simulating retentostats. . Environ Microbiol 11:, 2425–2433. [CrossRef][PubMed]
    [Google Scholar]
  51. Lloyd J. R., Leang C., Hodges Myerson A. L., Coppi M. V., Ciufo S., Methe B., Sandler S. J., Lovley D. R.. ( 2003;). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. . Biochem J 369:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  52. Lovley D. R.. ( 1995;). Microbial reduction of iron, manganese, and other metals. . Adv Agron 54:, 175–231. [CrossRef]
    [Google Scholar]
  53. Lovley D. R.. ( 2008;). Extracellular electron transfer: wires, capacitors, iron lungs, and more. . Geobiology 6:, 225–231. [CrossRef][PubMed]
    [Google Scholar]
  54. Lovley D. R.. ( 2011;). Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. . Energy Environ Sci 4:, 4896–4906. [CrossRef]
    [Google Scholar]
  55. Lovley D. R., Phillips E. J. P.. ( 1986;). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. . Appl Environ Microbiol 51:, 683–689.[PubMed]
    [Google Scholar]
  56. Lovley D. R., Phillips E. J. P.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  57. Lovley D. R., Holmes D. E., Nevin K. P.. ( 2004;). Dissimilatory Fe(III) and Mn(IV) reduction. . In Advances in Microbial Physiology, vol. 49, pp. 219–286. Edited by Poole R. K... Amsterdam:: Elsevier; [CrossRef]
    [Google Scholar]
  58. Lovley D. R., Ueki T., Zhang T., Malvankar N. S., Shrestha P. M., Flanagan K. A., Aklujkar M., Butler J. E., Giloteaux L.. & other authors ( 2011;). Geobacter: the microbe electric’s physiology, ecology, and practical applications. . Adv Microb Physiol 59:, 1–100. [CrossRef][PubMed]
    [Google Scholar]
  59. Mahadevan R., Palsson B. O., Lovley D. R.. ( 2011;). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. . Nat Rev Microbiol 9:, 39–50. [CrossRef][PubMed]
    [Google Scholar]
  60. Malvankar N. S., Lovley D. R.. ( 2012;). Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. . ChemSusChem 5:, 1039–1046. [CrossRef][PubMed]
    [Google Scholar]
  61. Malvankar N. S., Vargas M., Nevin K. P., Franks A. E., Leang C., Kim B. C., Inoue K., Mester T., Covalla S. F.. & other authors ( 2011;). Tunable metallic-like conductivity in microbial nanowire networks. . Nat Nanotechnol 6:, 573–579. [CrossRef][PubMed]
    [Google Scholar]
  62. Mehta T., Coppi M. V., Childers S. E., Lovley D. R.. ( 2005;). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. . Appl Environ Microbiol 71:, 8634–8641. [CrossRef][PubMed]
    [Google Scholar]
  63. Mehta T., Childers S. E., Glaven R., Lovley D. R., Mester T.. ( 2006;). A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. . Microbiology 152:, 2257–2264. [CrossRef][PubMed]
    [Google Scholar]
  64. Methé B. A., Webster J., Nevin K., Butler J., Lovley D. R.. ( 2005;). DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. . Appl Environ Microbiol 71:, 2530–2538. [CrossRef][PubMed]
    [Google Scholar]
  65. Morgado L., Paixão V. B., Schiffer M., Pokkuluri P. R., Bruix M., Salgueiro C. A.. ( 2012;). Revealing the structural origin of the redox–Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens. . Biochem J 441:, 179–187. [CrossRef][PubMed]
    [Google Scholar]
  66. Mouser P. J., Holmes D. E., Perpetua L. A., DiDonato R., Postier B., Liu A., Lovley D. R.. ( 2009;). Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation. . ISME J 3:, 454–465. [CrossRef][PubMed]
    [Google Scholar]
  67. Nevin K. P., Lovley D. R.. ( 2000;). Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. . Appl Environ Microbiol 66:, 2248–2251. [CrossRef][PubMed]
    [Google Scholar]
  68. Nevin K. P., Lovley D. R.. ( 2002;). Mechanisms for Fe(III) oxide reduction in sedimentary environments. . Geomicrobiol J 19:, 141–159. [CrossRef]
    [Google Scholar]
  69. Nevin K. P., Kim B. C., Glaven R. H., Johnson J. P., Woodard T. L., Methé B. A., Didonato R. J., Covalla S. F., Franks A. E.. & other authors ( 2009;). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. . PLoS ONE 4:, e5628. [CrossRef][PubMed]
    [Google Scholar]
  70. O’Neil R. A., Holmes D. E., Coppi M. V., Adams L. A., Larrahondo M. J., Ward J. E., Nevin K. P., Woodard T. L., Vrionis H. A.. & other authors ( 2008;). Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation. . Environ Microbiol 10:, 1218–1230. [CrossRef][PubMed]
    [Google Scholar]
  71. Phillips E. J. P., Lovley D. R.. ( 1987;). Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. . Soil Sci Soc Am J 51:, 938–941. [CrossRef]
    [Google Scholar]
  72. Pokkuluri P. R., Londer Y. Y., Duke N. E. C., Pessanha M., Yang X., Orshonsky V., Orshonsky L., Erickson J., Zagyanskiy Y.. & other authors ( 2011;). Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes. . J Struct Biol 174:, 223–233. [CrossRef][PubMed]
    [Google Scholar]
  73. Postier B., Didonato R. Jr, Nevin K. P., Liu A., Frank B., Lovley D., Methe B. A.. ( 2008;). Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms. . J Microbiol Methods 74:, 26–32. [CrossRef][PubMed]
    [Google Scholar]
  74. Qian X. L., Reguera G., Mester T., Lovley D. R.. ( 2007;). Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. . FEMS Microbiol Lett 277:, 21–27. [CrossRef][PubMed]
    [Google Scholar]
  75. Qian X. L., Mester T., Morgado L., Arakawa T., Sharma M. L., Inoue K., Joseph C., Salgueiro C. A., Maroney M. J., Lovley D. R.. ( 2011;). Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. . Biochim Biophys Acta 1807:, 404–412. [CrossRef][PubMed]
    [Google Scholar]
  76. Reguera G., McCarthy K. D., Mehta T., Nicoll J. S., Tuominen M. T., Lovley D. R.. ( 2005;). Extracellular electron transfer via microbial nanowires. . Nature 435:, 1098–1101. [CrossRef][PubMed]
    [Google Scholar]
  77. Richter H., Nevin K. P., Jia H. F., Lowy D. A., Lovley D. R., Tender L. M.. ( 2009;). Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. . Energy Environ Sci 2:, 506–516. [CrossRef]
    [Google Scholar]
  78. Richter L. V., Sandler S. J., Weis R. M.. ( 2012;). Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. . J Bacteriol 194:, 2551–2563. [CrossRef][PubMed]
    [Google Scholar]
  79. Risso C., Methé B. A., Elifantz H., Holmes D. E., Lovley D. R.. ( 2008;). Highly conserved genes in Geobacter species with expression patterns indicative of acetate limitation. . Microbiology 154:, 2589–2599. [CrossRef][PubMed]
    [Google Scholar]
  80. Rodrigues M. L., Oliveira T. F., Pereira I. A. C., Archer M.. ( 2006;). X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. . EMBO J 25:, 5951–5960. [CrossRef][PubMed]
    [Google Scholar]
  81. Rollefson J. B., Levar C. E., Bond D. R.. ( 2009;). Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens. . J Bacteriol 191:, 4207–4217. [CrossRef][PubMed]
    [Google Scholar]
  82. Rollefson J. B., Stephen C. S., Tien M., Bond D. R.. ( 2011;). Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. . J Bacteriol 193:, 1023–1033. [CrossRef][PubMed]
    [Google Scholar]
  83. Schuetz B., Schicklberger M., Kuermann J., Spormann A. M., Gescher J.. ( 2009;). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. . Appl Environ Microbiol 75:, 7789–7796. [CrossRef][PubMed]
    [Google Scholar]
  84. Schütz B., Seidel J., Sturm G., Einsle O., Gescher J.. ( 2011;). Investigation of the electron transport chain to and the catalytic activity of the diheme cytochrome c peroxidase CcpA of Shewanella oneidensis. . Appl Environ Microbiol 77:, 6172–6180. [CrossRef][PubMed]
    [Google Scholar]
  85. Seidel J., Hoffmann M., Ellis K. E., Seidel A., Spatzal T., Gerhardt S., Elliott S. J., Einsle O.. ( 2012;). MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens. . Biochemistry 51:, 2747–2756. [CrossRef][PubMed]
    [Google Scholar]
  86. Shelobolina E. S., Coppi M. V., Korenevsky A. A., DiDonato L. N., Sullivan S. A., Konishi H., Xu H. F., Leang C., Butler J. E.. & other authors ( 2007;). Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. . BMC Microbiol 7:, 16. [CrossRef][PubMed]
    [Google Scholar]
  87. Shi L., Squier T. C., Zachara J. M., Fredrickson J. K.. ( 2007;). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. . Mol Microbiol 65:, 12–20. [CrossRef][PubMed]
    [Google Scholar]
  88. Smyth G. K.. ( 2004;). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. . Stat Appl Genet Mol Biol 3:, e3.[PubMed]
    [Google Scholar]
  89. Smyth G. K., Speed T.. ( 2003;). Normalization of cDNA microarray data. . Methods 31:, 265–273. [CrossRef][PubMed]
    [Google Scholar]
  90. Strycharz S. M., Glaven R. H., Coppi M. V., Gannon S. M., Perpetua L. A., Liu A., Nevin K. P., Lovley D. R.. ( 2011;). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. . Bioelectrochemistry 80:, 142–150. [CrossRef][PubMed]
    [Google Scholar]
  91. Touati D.. ( 2000;). Iron and oxidative stress in bacteria. . Arch Biochem Biophys 373:, 1–6. [CrossRef][PubMed]
    [Google Scholar]
  92. Tremblay P. L., Lovley D. R.. ( 2012;). Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. . J Bacteriol 194:, 2248–2253. [CrossRef][PubMed]
    [Google Scholar]
  93. Tremblay P. L., Summers Z. M., Glaven R. H., Nevin K. P., Zengler K., Barrett C. L., Qiu Y., Palsson B. O., Lovley D. R.. ( 2011;). A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. . Environ Microbiol 13:, 13–23. [CrossRef][PubMed]
    [Google Scholar]
  94. Trumpower B. L.. ( 1990;). The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. . J Biol Chem 265:, 11409–11412.[PubMed]
    [Google Scholar]
  95. Ueki T., Lovley D. R.. ( 2010;). Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens. . Nucleic Acids Res 38:, 7485–7499. [CrossRef][PubMed]
    [Google Scholar]
  96. Voordeckers J. W., Kim B. C., Izallalen M., Lovley D. R.. ( 2010;). Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. . Appl Environ Microbiol 76:, 2371–2375. [CrossRef][PubMed]
    [Google Scholar]
  97. Zhuang K., Izallalen M., Mouser P., Richter H., Risso C., Mahadevan R., Lovley D. R.. ( 2011;). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. . ISME J 5:, 305–316. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064089-0
Loading
/content/journal/micro/10.1099/mic.0.064089-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error