1887

Abstract

Toxin–antitoxin (TA) systems in may play a role in biofilm formation, but the mechanism involved remains debatable. It is not known whether the TA systems are responsible for extracellular DNA (eDNA) in biofilms. In this study, we investigated the function of the TA system in biofilm formation by strain BW25113. First, the deletion of the HipBA TA system in BW25113 significantly reduced the biofilm biomass without antibiotic stress. Second, treatment of the BW25113 biofilm with DNase I caused a major reduction in biofilm formation, whereas similar treatment of the mutant biofilm had only a minor effect. Third, the inactivation of HipA reduced the level of eDNA present in biofilm formation, and addition of BW25113 genomic DNA stimulated biofilm formation for both the wild-type and mutant. Fourth, the wild-type cells underwent significantly more cell lysis than the mutant. These results suggest that plays a significant role during biofilm development and that eDNA is an important structural component of BW25113 biofilms. Thus, the TA system may enhance biofilm formation through DNA release.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063784-0
2013-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/633.html?itemId=/content/journal/micro/10.1099/mic.0.063784-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H..( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:0008 [CrossRef][PubMed]
    [Google Scholar]
  2. Barraud N., Storey M. V., Moore Z. P., Webb J. S., Rice S. A., Kjelleberg S..( 2009;). Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol2:370–378 [CrossRef][PubMed]
    [Google Scholar]
  3. Black D. S., Kelly A. J., Mardis M. J., Moyed H. S..( 1991;). Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol173:5732–5739[PubMed]
    [Google Scholar]
  4. Black D. S., Irwin B., Moyed H. S..( 1994;). Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol176:4081–4091[PubMed]
    [Google Scholar]
  5. Buts L., Lah J., Dao-Thi M.-H., Wyns L., Loris R..( 2005;). Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci30:672–679 [CrossRef][PubMed]
    [Google Scholar]
  6. Correia F. F., D’Onofrio A., Rejtar T., Li L., Karger B. L., Makarova K., Koonin E. V., Lewis K..( 2006;). Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol188:8360–8367 [CrossRef][PubMed]
    [Google Scholar]
  7. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M..( 1995;). Microbial biofilms. Annu Rev Microbiol49:711–745 [CrossRef][PubMed]
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  9. Engelberg-Kulka H., Hazan R., Amitai S..( 2005;). mazEF: a chromosomal toxin–antitoxin module that triggers programmed cell death in bacteria. J Cell Sci118:4327–4332 [CrossRef][PubMed]
    [Google Scholar]
  10. Engelberg-Kulka H., Amitai S., Kolodkin-Gal I., Hazan R..( 2006;). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet2:e135 [CrossRef][PubMed]
    [Google Scholar]
  11. Falla T. J., Chopra I..( 1998;). Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother42:3282–3284[PubMed]
    [Google Scholar]
  12. Hayes F..( 2003;). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science301:1496–1499 [CrossRef][PubMed]
    [Google Scholar]
  13. Heijstra B. D., Pichler F. B., Liang Q., Blaza R. G., Turner S. J..( 2009;). Extracellular DNA and type IV pili mediate surface attachment by Acidovorax temperans. Antonie van Leeuwenhoek95:343–349 [CrossRef][PubMed]
    [Google Scholar]
  14. Karunakaran E., Mukherjee J., Ramalingam B., Biggs C. A..( 2011;). “Biofilmology”: a multidisciplinary review of the study of microbial biofilms. Appl Microbiol Biotechnol90:1869–1881 [CrossRef][PubMed]
    [Google Scholar]
  15. Kasari V., Kurg K., Margus T., Tenson T., Kaldalu N..( 2010;). The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J Bacteriol192:2908–2919 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim Y., Wang X., Ma Q., Zhang X. S., Wood T. K..( 2009;). Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol191:1258–1267 [CrossRef][PubMed]
    [Google Scholar]
  17. Kolodkin-Gal I., Verdiger R., Shlosberg-Fedida A., Engelberg-Kulka H..( 2009;). A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS ONE4:e6785 [CrossRef][PubMed]
    [Google Scholar]
  18. Korch S. B., Hill T. M..( 2006;). Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: effects on macromolecular synthesis and persister formation. J Bacteriol188:3826–3836 [CrossRef][PubMed]
    [Google Scholar]
  19. Korch S. B., Henderson T. A., Hill T. M..( 2003;). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol50:1199–1213 [CrossRef][PubMed]
    [Google Scholar]
  20. Lewis K..( 2007;). Persister cells, dormancy and infectious disease. Nat Rev Microbiol5:48–56 [CrossRef][PubMed]
    [Google Scholar]
  21. Lewis K..( 2008;). Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol322:107–131 [CrossRef][PubMed]
    [Google Scholar]
  22. Li M., Wang J., Geng Y., Li Y., Wang Q., Liang Q., Qi Q..( 2012;). A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb Cell Fact11:19 [CrossRef][PubMed]
    [Google Scholar]
  23. Magnuson R. D..( 2007;). Hypothetical functions of toxin-antitoxin systems. J Bacteriol189:6089–6092 [CrossRef][PubMed]
    [Google Scholar]
  24. Moyed H. S., Broderick S. H..( 1986;). Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol166:399–403[PubMed]
    [Google Scholar]
  25. Reisner A., Krogfelt K. A., Klein B. M., Zechner E. L., Molin S..( 2006;). In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol188:3572–3581 [CrossRef][PubMed]
    [Google Scholar]
  26. Ren D., Bedzyk L. A., Thomas S. M., Ye R. W., Wood T. K..( 2004;). Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol64:515–524 [CrossRef][PubMed]
    [Google Scholar]
  27. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W..( 2007;). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A104:8113–8118 [CrossRef][PubMed]
    [Google Scholar]
  28. Rice S. A., Tan C. H., Mikkelsen P. J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J. S., Kjelleberg S..( 2009;). The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J3:271–282 [CrossRef][PubMed]
    [Google Scholar]
  29. Schumacher M. A., Piro K. M., Xu W., Hansen S., Lewis K., Brennan R. G..( 2009;). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science323:396–401 [CrossRef][PubMed]
    [Google Scholar]
  30. Spoering A. L., Gilmore M. S..( 2006;). Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol9:133–137 [CrossRef][PubMed]
    [Google Scholar]
  31. Steinmoen H., Knutsen E., Håvarstein L. S..( 2002;). Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686 [CrossRef][PubMed]
    [Google Scholar]
  32. Tan Q. A., Awano N., Inouye M..( 2011;). YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol Microbiol79:109–118 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang X. X., Kim Y., Wood T. K..( 2009;). Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J3:1164–1179 [CrossRef][PubMed]
    [Google Scholar]
  34. Webb J. S., Thompson L. S., James S., Charlton T., Tolker-Nielsen T., Koch B., Givskov M., Kjelleberg S..( 2003;). Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol185:4585–4592 [CrossRef][PubMed]
    [Google Scholar]
  35. West S. A., Diggle S. P., Buckling A., Gardner A., Griffin A. S..( 2007;). The social lives of microbes. Annu Rev Ecol Evol Syst38:53–77 [CrossRef]
    [Google Scholar]
  36. Wu J., Xi C..( 2009;). Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl Environ Microbiol75:5390–5395 [CrossRef][PubMed]
    [Google Scholar]
  37. Zegans M. E., Wagner J. C., Cady K. C., Murphy D. M., Hammond J. H., O’Toole G. A..( 2009;). Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol191:210–219 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063784-0
Loading
/content/journal/micro/10.1099/mic.0.063784-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error