1887

Abstract

Bacteriophages are considered as promising biological agents for the control of infectious diseases. Sequencing of their genomes can ascertain the absence of antibiotic resistance, toxin or virulence genes. The anti-O157 : H7 coliphage, PhaxI, was isolated from a sewage sample in Iran. Morphological studies by transmission electron microscopy showed that it has an icosahedral capsid of 85–86 nm and a contractile tail of 115×15 nm. PhaxI contains dsDNA composed of 156 628 nt with a G+C content of 44.5 mol% that encodes 209 putative proteins. In MS analysis of phage particles, 92 structural proteins were identified. PhaxI lyses O157 : H7 in Luria-Bertani medium and milk, has an eclipse period of 20 min and a latent period of 40 min, and has a burst size of about 420 particles per cell. PhaxI is a member of the genus ‘Viunalikevirus’ of the family and is specific for O157 : H7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063776-0
2013-08-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1629.html?itemId=/content/journal/micro/10.1099/mic.0.063776-0&mimeType=html&fmt=ahah

References

  1. Ackermann H.-W..( 2009a;). Basic phage electron microscopy. Methods Mol Biol501:113–126 [CrossRef][PubMed]
    [Google Scholar]
  2. Ackermann H.-W..( 2009b;). Phage classification and characterization. Methods Mol Biol501:127–140 [CrossRef][PubMed]
    [Google Scholar]
  3. Ackermann H.-W., DuBow M..(editors) ( 1987;). General properties of bacteriophages. Viruses of Prokaryotes151–154 Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Ackermann H.-W., Berthiaume L., Kasatiya S. S..( 1970;). Ultrastructure of Vi phages I to VII of Salmonella typhi. Can J Microbiol16:411–413 [CrossRef][PubMed]
    [Google Scholar]
  5. Adams M. H..( 1959;). Bacteriophage New York: Interscience Publishers;
    [Google Scholar]
  6. Adriaenssens E. M., Ackermann H.-W., Anany H., Blasdel B., Connerton I. F., Goulding D., Griffiths M. W., Hooton S. P., Kutter E. M..& other authors ( 2012a;). A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol157:2035–2046 [CrossRef][PubMed]
    [Google Scholar]
  7. Adriaenssens E. M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P. J., De Proft M., Kropinski A. M., Noben J. P., Maes M., Lavigne R..( 2012b;). T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE7:e33227 [CrossRef][PubMed]
    [Google Scholar]
  8. Anany H., Lingohr E. J., Villegas A., Ackermann H.-W., She Y. M., Griffiths M. W., Kropinski A. M..( 2011;). A Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virol J8:242–251 [CrossRef][PubMed]
    [Google Scholar]
  9. Bailey T. L., Elkan C..( 1994;). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36
    [Google Scholar]
  10. Baron L. S., Formal S. B., Spilman W..( 1955;). Vi phage–host interaction in Salmonella typhosa. J Bacteriol69:177–183[PubMed]
    [Google Scholar]
  11. Besemer J., Lomsadze A., Borodovsky M..( 2001;). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  12. Bitzan M..( 2009;). Treatment options for HUS secondary to Escherichia coli O157 : H7. Kidney Int Suppl75:112S62–S66 [CrossRef][PubMed]
    [Google Scholar]
  13. Brüssow H., Hendrix R. W..( 2002;). Phage genomics: small is beautiful. Cell108:13–16 [CrossRef][PubMed]
    [Google Scholar]
  14. Carlton R. M..( 1999;). Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz)47:267–274[PubMed]
    [Google Scholar]
  15. Cebula T. A., Payne W. L., Feng P..( 1995;). Simultaneous identification of strains of Escherichia coli serotype O157 : H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J Clin Microbiol33:248–250[PubMed]
    [Google Scholar]
  16. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E..( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  17. d’Herelle F..( 1917;). About an invisible microbe antagonistic to dysentery bacilli. Comptes Rend Acad Sci165:372–375
    [Google Scholar]
  18. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L..( 1999;). Improved microbial gene identification with GLIMMER. Nucleic Acids Res27:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  19. Ermolaeva M. D., Khalak H. G., White O., Smith H. O., Salzberg S. L..( 2000;). Prediction of transcription terminators in bacterial genomes. J Mol Biol301:27–33 [CrossRef][PubMed]
    [Google Scholar]
  20. Feng P..( 1995;). Escherichia coli serotype O157 : H7: novel vehicles of infection and emergence of phenotypic variants. Emerg Infect Dis1:47–52 [CrossRef][PubMed]
    [Google Scholar]
  21. Galland J. C., Hyatt D. R., Crupper S. S., Acheson D. W..( 2001;). Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157 : H7 isolates from a longitudinal study of beef cattle feedlots. Appl Environ Microbiol67:1619–1627 [CrossRef][PubMed]
    [Google Scholar]
  22. Geiduschek E. P., Kassavetis G. A..( 2010;). Transcription of the T4 late genes. Virol J7:288–299 [CrossRef][PubMed]
    [Google Scholar]
  23. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P..( 1992;). Fate of Escherichia coli O157 : H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol58:2513–2516[PubMed]
    [Google Scholar]
  24. Grant J. R., Stothard P..( 2008;). The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res36:suppl. 2W181–184 [CrossRef][PubMed]
    [Google Scholar]
  25. Guarner F., Malagelada J.-R..( 2003;). Gut flora in health and disease. Lancet361:512–519 [CrossRef][PubMed]
    [Google Scholar]
  26. Hanlon G. W..( 2007;). Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents30:118–128 [CrossRef][PubMed]
    [Google Scholar]
  27. Hill M. J..( 1997;). Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev6:Suppl 1S43–S45 [CrossRef][PubMed]
    [Google Scholar]
  28. Hooton S. P., Timms A. R., Rowsell J., Wilson R., Connerton I. F..( 2011;). Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. Virol J8:498–511 [CrossRef][PubMed]
    [Google Scholar]
  29. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L..( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  30. Kudva I. T., Jelacic S., Tarr P. I., Youderian P., Hovde C. J..( 1999;). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol65:3767–3773[PubMed]
    [Google Scholar]
  31. Kutter E. M., Skutt-Kakaria K., Blasdel B., El-Shibiny A., Castano A., Bryan D., Kropinski A. M., Villegas A., Ackermann H.-W..& other authors ( 2011;). Characterization of a ViI-like phage specific to Escherichia coli O157 : H7. Virol J8:430–443 [CrossRef][PubMed]
    [Google Scholar]
  32. La Ragione R. M., Best A., Woodward M. J., Wales A. D..( 2009;). Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol Rev33:394–410 [CrossRef][PubMed]
    [Google Scholar]
  33. Laslett D., Canback B..( 2004;). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res32:11–16 [CrossRef][PubMed]
    [Google Scholar]
  34. Lavigne R., Sun W. D., Volckaert G..( 2004;). PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics20:629–635 [CrossRef][PubMed]
    [Google Scholar]
  35. Liao W. C., Ng W. V., Lin I. H., Syu W. J., Liu T. T., Chang C. H..( 2011;). T4-like genome organization of the Escherichia coli O157 : H7 lytic phage AR1. J Virol85:6567–6578 [CrossRef][PubMed]
    [Google Scholar]
  36. Mao Y., Doyle M. P., Chen J..( 2001;). Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol183:3811–3815 [CrossRef][PubMed]
    [Google Scholar]
  37. Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L..( 2005;). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122:107–118 [CrossRef][PubMed]
    [Google Scholar]
  38. Miller E. S., Kutter E., Mosig G., Arisaka F., Kunisawa T., Rüger W..( 2003;). Bacteriophage T4 genome. Microbiol Mol Biol Rev67:86–156 [CrossRef][PubMed]
    [Google Scholar]
  39. Mizoguchi K., Morita M., Fischer C. R., Yoichi M., Tanji Y., Unno H..( 2003;). Coevolution of bacteriophage PP01 and Escherichia coli O157 : H7 in continuous culture. Appl Environ Microbiol69:170–176 [CrossRef][PubMed]
    [Google Scholar]
  40. Morita M., Tanji Y., Mizoguchi K., Akitsu T., Kijima N., Unno H..( 2002;). Characterization of a virulent bacteriophage specific for Escherichia coli O157 : H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol Lett211:77–83 [CrossRef][PubMed]
    [Google Scholar]
  41. Niu Y. D., Stanford K., Kropinski A. M., Ackermann H. W., Johnson R. P., She Y. M., Ahmed R., Villegas A., McAllister T. A..( 2012;). Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157 : H7. PLoS ONE7:e34585 [CrossRef][PubMed]
    [Google Scholar]
  42. O’Flynn G., Ross R. P., Fitzgerald G. F., Coffey A..( 2004;). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157 : H7. Appl Environ Microbiol70:3417–3424 [CrossRef][PubMed]
    [Google Scholar]
  43. Olsen S. J., Miller G., Breuer T., Kennedy M., Higgins C., Walford J., McKee G., Fox K., Bibb W., Mead P..( 2002;). A waterborne outbreak of Escherichia coli O157 : H7 infections and hemolytic uremic syndrome: implications for rural water systems. Emerg Infect Dis8:370–375 [CrossRef][PubMed]
    [Google Scholar]
  44. Park M., Lee J. H., Shin H., Kim M., Choi J., Kang D. H., Heu S., Ryu S..( 2012;). Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157 : H7. Appl Environ Microbiol78:58–69 [CrossRef][PubMed]
    [Google Scholar]
  45. Petty N. K., Evans T. J., Fineran P. C., Salmond G. P..( 2007;). Biotechnological exploitation of bacteriophage research. Trends Biotechnol25:7–15 [CrossRef][PubMed]
    [Google Scholar]
  46. Pickard D., Toribio A. L., Petty N. K., van Tonder A., Yu L., Goulding D., Barrell B., Rance R., Harris D..& other authors ( 2010;). A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. J Bacteriol192:5746–5754 [CrossRef][PubMed]
    [Google Scholar]
  47. Raya R. R., Varey P., Oot R. A., Dyen M. R., Callaway T. R., Edrington T. S., Kutter E. M., Brabban A. D..( 2006;). Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157 : H7 levels in sheep. Appl Environ Microbiol72:6405–6410 [CrossRef][PubMed]
    [Google Scholar]
  48. Raya R. R., Oot R. A., Moore-Maley B., Wieland S., Callaway T. R., Kutter E. M., Brabban A. D..( 2011;). Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157 : H7 levels in sheep guts. Bacteriophage1:15–24 [CrossRef][PubMed]
    [Google Scholar]
  49. Rivas L., Coffey B., McAuliffe O., McDonnell M. J., Burgess C. M., Coffey A., Ross R. P., Duffy G..( 2010;). In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157 : H7. Appl Environ Microbiol76:7210–7216 [CrossRef][PubMed]
    [Google Scholar]
  50. Ronner A. B., Cliver D. O..( 1990;). Isolation and characterization of a coliphage specific for Escherichia coli O157 : H7. J Food Prot53:944–947
    [Google Scholar]
  51. Saeidnia S., Sepehrizadeh Z., Gohari A., Jaberi E., Amin G., Hadjiakhoondi A..( 2009;). Determination of genetic relations among four Saliva L. species using RAPD analysis. World Appl Sci J6:238–241
    [Google Scholar]
  52. Schattner P., Brooks A. N., Lowe T. M..( 2005;). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res33:Web Server issueW686–689 [CrossRef][PubMed]
    [Google Scholar]
  53. Schroeder C. M., Zhao C., DebRoy C., Torcolini J., Zhao S., White D. G., Wagner D. D., McDermott P. F., Walker R. D., Meng J..( 2002;). Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol68:576–581 [CrossRef][PubMed]
    [Google Scholar]
  54. Sheng H., Knecht H. J., Kudva I. T., Hovde C. J..( 2006;). Application of bacteriophages to control intestinal Escherichia coli O157 : H7 levels in ruminants. Appl Environ Microbiol72:5359–5366 [CrossRef][PubMed]
    [Google Scholar]
  55. Skurnik M., Pajunen M., Kiljunen S..( 2007;). Biotechnological challenges of phage therapy. Biotechnol Lett29:995–1003 [CrossRef][PubMed]
    [Google Scholar]
  56. Skurnik M., Hyytiäinen H. J., Happonen L. J., Kiljunen S., Datta N., Mattinen L., Williamson K., Kristo P., Szeliga M..& other authors ( 2012;). Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37. J Virol86:12625–12642 [CrossRef][PubMed]
    [Google Scholar]
  57. Sulakvelidze A., Alavidze Z., Morris J. G. Jr.( 2001;). Bacteriophage therapy. Antimicrob Agents Chemother45:649–659 [CrossRef][PubMed]
    [Google Scholar]
  58. Suttle C. A..( 2005;). Viruses in the sea. Nature437:356–361 [CrossRef][PubMed]
    [Google Scholar]
  59. Suzek B. E., Ermolaeva M. D., Schreiber M., Salzberg S. L..( 2001;). A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics17:1123–1130 [CrossRef][PubMed]
    [Google Scholar]
  60. Thomas J. A., Weintraub S. T., Wu W., Winkler D. C., Cheng N., Steven A. C., Black L. W..( 2012;). Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage φKZ. Mol Microbiol84:324–339 [CrossRef][PubMed]
    [Google Scholar]
  61. Twort F..( 1915;). An investigation on the nature of ultra-microscopic viruses. Lancet2:1241–1243 [CrossRef]
    [Google Scholar]
  62. Varjosalo M., Sacco R., Stukalov A., van Drogen A., Planyavsky M., Hauri S., Aebersold R., Bennett K. L., Colinge J..& other authors ( 2013;). Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods10:307–314 [CrossRef][PubMed]
    [Google Scholar]
  63. Villegas A., She Y.-M., Kropinski A. M., Lingohr J. E., Mazzocco A., Ojha S., Waddell T. E., Ackermann H.-W., Moyles D. M..& other authors ( 2009;). The genome and proteome of a virulent Escherichia coli O157 : H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J6:1–5 [CrossRef][PubMed]
    [Google Scholar]
  64. Wang G., Zhao T., Doyle M. P..( 1996;). Fate of enterohemorrhagic Escherichia coli O157 : H7 in bovine feces. Appl Environ Microbiol62:2567–2570[PubMed]
    [Google Scholar]
  65. Weinbauer M. G..( 2004;). Ecology of prokaryotic viruses. FEMS Microbiol Rev28:127–181 [CrossRef][PubMed]
    [Google Scholar]
  66. Wyborn N. R., Mills J., Williams S. G., Jones C. W..( 1996;). Molecular characterisation of formamidase from Methylophilus methylotrophus. Eur J Biochem240:314–322 [CrossRef][PubMed]
    [Google Scholar]
  67. Young I., Wang I.-N., Roof W. D..( 2000;). Phages will out: strategies of host cell lysis. Trends Microbiol8:120–128 [CrossRef][PubMed]
    [Google Scholar]
  68. Zhao S., White D. G., Ge B., Ayers S., Friedman S., English L., Wagner D., Gaines S., Meng J..( 2001;). Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol67:1558–1564 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063776-0
Loading
/content/journal/micro/10.1099/mic.0.063776-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error