1887

Abstract

Bacteriophages are considered as promising biological agents for the control of infectious diseases. Sequencing of their genomes can ascertain the absence of antibiotic resistance, toxin or virulence genes. The anti-O157 : H7 coliphage, PhaxI, was isolated from a sewage sample in Iran. Morphological studies by transmission electron microscopy showed that it has an icosahedral capsid of 85–86 nm and a contractile tail of 115×15 nm. PhaxI contains dsDNA composed of 156 628 nt with a G+C content of 44.5 mol% that encodes 209 putative proteins. In MS analysis of phage particles, 92 structural proteins were identified. PhaxI lyses O157 : H7 in Luria-Bertani medium and milk, has an eclipse period of 20 min and a latent period of 40 min, and has a burst size of about 420 particles per cell. PhaxI is a member of the genus ‘Viunalikevirus’ of the family and is specific for O157 : H7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063776-0
2013-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1629.html?itemId=/content/journal/micro/10.1099/mic.0.063776-0&mimeType=html&fmt=ahah

References

  1. Ackermann H.-W.. ( 2009a;). Basic phage electron microscopy. . Methods Mol Biol 501:, 113–126. [CrossRef][PubMed]
    [Google Scholar]
  2. Ackermann H.-W.. ( 2009b;). Phage classification and characterization. . Methods Mol Biol 501:, 127–140. [CrossRef][PubMed]
    [Google Scholar]
  3. Ackermann H.-W., DuBow M.. (editors) ( 1987;). General properties of bacteriophages. . In Viruses of Prokaryotes, pp. 151–154. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  4. Ackermann H.-W., Berthiaume L., Kasatiya S. S.. ( 1970;). Ultrastructure of Vi phages I to VII of Salmonella typhi. . Can J Microbiol 16:, 411–413. [CrossRef][PubMed]
    [Google Scholar]
  5. Adams M. H.. ( 1959;). Bacteriophage. New York:: Interscience Publishers;.
    [Google Scholar]
  6. Adriaenssens E. M., Ackermann H.-W., Anany H., Blasdel B., Connerton I. F., Goulding D., Griffiths M. W., Hooton S. P., Kutter E. M.. & other authors ( 2012a;). A suggested new bacteriophage genus: “Viunalikevirus”. . Arch Virol 157:, 2035–2046. [CrossRef][PubMed]
    [Google Scholar]
  7. Adriaenssens E. M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P. J., De Proft M., Kropinski A. M., Noben J. P., Maes M., Lavigne R.. ( 2012b;). T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. . PLoS ONE 7:, e33227. [CrossRef][PubMed]
    [Google Scholar]
  8. Anany H., Lingohr E. J., Villegas A., Ackermann H.-W., She Y. M., Griffiths M. W., Kropinski A. M.. ( 2011;). A Shigella boydii bacteriophage which resembles Salmonella phage ViI. . Virol J 8:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  9. Bailey T. L., Elkan C.. ( 1994;). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. . Proc Int Conf Intell Syst Mol Biol 2:, 28–36.
    [Google Scholar]
  10. Baron L. S., Formal S. B., Spilman W.. ( 1955;). Vi phage–host interaction in Salmonella typhosa. . J Bacteriol 69:, 177–183.[PubMed]
    [Google Scholar]
  11. Besemer J., Lomsadze A., Borodovsky M.. ( 2001;). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. . Nucleic Acids Res 29:, 2607–2618. [CrossRef][PubMed]
    [Google Scholar]
  12. Bitzan M.. ( 2009;). Treatment options for HUS secondary to Escherichia coli O157 : H7. . Kidney Int Suppl 75: (112), S62–S66. [CrossRef][PubMed]
    [Google Scholar]
  13. Brüssow H., Hendrix R. W.. ( 2002;). Phage genomics: small is beautiful. . Cell 108:, 13–16. [CrossRef][PubMed]
    [Google Scholar]
  14. Carlton R. M.. ( 1999;). Phage therapy: past history and future prospects. . Arch Immunol Ther Exp (Warsz) 47:, 267–274.[PubMed]
    [Google Scholar]
  15. Cebula T. A., Payne W. L., Feng P.. ( 1995;). Simultaneous identification of strains of Escherichia coli serotype O157 : H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. . J Clin Microbiol 33:, 248–250.[PubMed]
    [Google Scholar]
  16. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. ( 2004;). WebLogo: a sequence logo generator. . Genome Res 14:, 1188–1190. [CrossRef][PubMed]
    [Google Scholar]
  17. d’Herelle F.. ( 1917;). About an invisible microbe antagonistic to dysentery bacilli. . Comptes Rend Acad Sci 165:, 372–375.
    [Google Scholar]
  18. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L.. ( 1999;). Improved microbial gene identification with GLIMMER. . Nucleic Acids Res 27:, 4636–4641. [CrossRef][PubMed]
    [Google Scholar]
  19. Ermolaeva M. D., Khalak H. G., White O., Smith H. O., Salzberg S. L.. ( 2000;). Prediction of transcription terminators in bacterial genomes. . J Mol Biol 301:, 27–33. [CrossRef][PubMed]
    [Google Scholar]
  20. Feng P.. ( 1995;). Escherichia coli serotype O157 : H7: novel vehicles of infection and emergence of phenotypic variants. . Emerg Infect Dis 1:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  21. Galland J. C., Hyatt D. R., Crupper S. S., Acheson D. W.. ( 2001;). Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157 : H7 isolates from a longitudinal study of beef cattle feedlots. . Appl Environ Microbiol 67:, 1619–1627. [CrossRef][PubMed]
    [Google Scholar]
  22. Geiduschek E. P., Kassavetis G. A.. ( 2010;). Transcription of the T4 late genes. . Virol J 7:, 288–299. [CrossRef][PubMed]
    [Google Scholar]
  23. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P.. ( 1992;). Fate of Escherichia coli O157 : H7 as affected by pH or sodium chloride and in fermented, dry sausage. . Appl Environ Microbiol 58:, 2513–2516.[PubMed]
    [Google Scholar]
  24. Grant J. R., Stothard P.. ( 2008;). The CGView Server: a comparative genomics tool for circular genomes. . Nucleic Acids Res 36: (suppl. 2), W181–184. [CrossRef][PubMed]
    [Google Scholar]
  25. Guarner F., Malagelada J.-R.. ( 2003;). Gut flora in health and disease. . Lancet 361:, 512–519. [CrossRef][PubMed]
    [Google Scholar]
  26. Hanlon G. W.. ( 2007;). Bacteriophages: an appraisal of their role in the treatment of bacterial infections. . Int J Antimicrob Agents 30:, 118–128. [CrossRef][PubMed]
    [Google Scholar]
  27. Hill M. J.. ( 1997;). Intestinal flora and endogenous vitamin synthesis. . Eur J Cancer Prev 6: (Suppl 1), S43–S45. [CrossRef][PubMed]
    [Google Scholar]
  28. Hooton S. P., Timms A. R., Rowsell J., Wilson R., Connerton I. F.. ( 2011;). Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. . Virol J 8:, 498–511. [CrossRef][PubMed]
    [Google Scholar]
  29. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. ( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. . J Mol Biol 305:, 567–580. [CrossRef][PubMed]
    [Google Scholar]
  30. Kudva I. T., Jelacic S., Tarr P. I., Youderian P., Hovde C. J.. ( 1999;). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. . Appl Environ Microbiol 65:, 3767–3773.[PubMed]
    [Google Scholar]
  31. Kutter E. M., Skutt-Kakaria K., Blasdel B., El-Shibiny A., Castano A., Bryan D., Kropinski A. M., Villegas A., Ackermann H.-W.. & other authors ( 2011;). Characterization of a ViI-like phage specific to Escherichia coli O157 : H7. . Virol J 8:, 430–443. [CrossRef][PubMed]
    [Google Scholar]
  32. La Ragione R. M., Best A., Woodward M. J., Wales A. D.. ( 2009;). Escherichia coli O157:H7 colonization in small domestic ruminants. . FEMS Microbiol Rev 33:, 394–410. [CrossRef][PubMed]
    [Google Scholar]
  33. Laslett D., Canback B.. ( 2004;). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. . Nucleic Acids Res 32:, 11–16. [CrossRef][PubMed]
    [Google Scholar]
  34. Lavigne R., Sun W. D., Volckaert G.. ( 2004;). PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. . Bioinformatics 20:, 629–635. [CrossRef][PubMed]
    [Google Scholar]
  35. Liao W. C., Ng W. V., Lin I. H., Syu W. J., Liu T. T., Chang C. H.. ( 2011;). T4-like genome organization of the Escherichia coli O157 : H7 lytic phage AR1. . J Virol 85:, 6567–6578. [CrossRef][PubMed]
    [Google Scholar]
  36. Mao Y., Doyle M. P., Chen J.. ( 2001;). Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157 : H7. . J Bacteriol 183:, 3811–3815. [CrossRef][PubMed]
    [Google Scholar]
  37. Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L.. ( 2005;). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. . Cell 122:, 107–118. [CrossRef][PubMed]
    [Google Scholar]
  38. Miller E. S., Kutter E., Mosig G., Arisaka F., Kunisawa T., Rüger W.. ( 2003;). Bacteriophage T4 genome. . Microbiol Mol Biol Rev 67:, 86–156. [CrossRef][PubMed]
    [Google Scholar]
  39. Mizoguchi K., Morita M., Fischer C. R., Yoichi M., Tanji Y., Unno H.. ( 2003;). Coevolution of bacteriophage PP01 and Escherichia coli O157 : H7 in continuous culture. . Appl Environ Microbiol 69:, 170–176. [CrossRef][PubMed]
    [Google Scholar]
  40. Morita M., Tanji Y., Mizoguchi K., Akitsu T., Kijima N., Unno H.. ( 2002;). Characterization of a virulent bacteriophage specific for Escherichia coli O157 : H7 and analysis of its cellular receptor and two tail fiber genes. . FEMS Microbiol Lett 211:, 77–83. [CrossRef][PubMed]
    [Google Scholar]
  41. Niu Y. D., Stanford K., Kropinski A. M., Ackermann H. W., Johnson R. P., She Y. M., Ahmed R., Villegas A., McAllister T. A.. ( 2012;). Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157 : H7. . PLoS ONE 7:, e34585. [CrossRef][PubMed]
    [Google Scholar]
  42. O’Flynn G., Ross R. P., Fitzgerald G. F., Coffey A.. ( 2004;). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157 : H7. . Appl Environ Microbiol 70:, 3417–3424. [CrossRef][PubMed]
    [Google Scholar]
  43. Olsen S. J., Miller G., Breuer T., Kennedy M., Higgins C., Walford J., McKee G., Fox K., Bibb W., Mead P.. ( 2002;). A waterborne outbreak of Escherichia coli O157 : H7 infections and hemolytic uremic syndrome: implications for rural water systems. . Emerg Infect Dis 8:, 370–375. [CrossRef][PubMed]
    [Google Scholar]
  44. Park M., Lee J. H., Shin H., Kim M., Choi J., Kang D. H., Heu S., Ryu S.. ( 2012;). Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157 : H7. . Appl Environ Microbiol 78:, 58–69. [CrossRef][PubMed]
    [Google Scholar]
  45. Petty N. K., Evans T. J., Fineran P. C., Salmond G. P.. ( 2007;). Biotechnological exploitation of bacteriophage research. . Trends Biotechnol 25:, 7–15. [CrossRef][PubMed]
    [Google Scholar]
  46. Pickard D., Toribio A. L., Petty N. K., van Tonder A., Yu L., Goulding D., Barrell B., Rance R., Harris D.. & other authors ( 2010;). A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. . J Bacteriol 192:, 5746–5754. [CrossRef][PubMed]
    [Google Scholar]
  47. Raya R. R., Varey P., Oot R. A., Dyen M. R., Callaway T. R., Edrington T. S., Kutter E. M., Brabban A. D.. ( 2006;). Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157 : H7 levels in sheep. . Appl Environ Microbiol 72:, 6405–6410. [CrossRef][PubMed]
    [Google Scholar]
  48. Raya R. R., Oot R. A., Moore-Maley B., Wieland S., Callaway T. R., Kutter E. M., Brabban A. D.. ( 2011;). Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157 : H7 levels in sheep guts. . Bacteriophage 1:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
  49. Rivas L., Coffey B., McAuliffe O., McDonnell M. J., Burgess C. M., Coffey A., Ross R. P., Duffy G.. ( 2010;). In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157 : H7. . Appl Environ Microbiol 76:, 7210–7216. [CrossRef][PubMed]
    [Google Scholar]
  50. Ronner A. B., Cliver D. O.. ( 1990;). Isolation and characterization of a coliphage specific for Escherichia coli O157 : H7. . J Food Prot 53:, 944–947.
    [Google Scholar]
  51. Saeidnia S., Sepehrizadeh Z., Gohari A., Jaberi E., Amin G., Hadjiakhoondi A.. ( 2009;). Determination of genetic relations among four Saliva L. species using RAPD analysis. . World Appl Sci J 6:, 238–241.
    [Google Scholar]
  52. Schattner P., Brooks A. N., Lowe T. M.. ( 2005;). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (Web Server issue), W686–689. [CrossRef][PubMed]
    [Google Scholar]
  53. Schroeder C. M., Zhao C., DebRoy C., Torcolini J., Zhao S., White D. G., Wagner D. D., McDermott P. F., Walker R. D., Meng J.. ( 2002;). Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. . Appl Environ Microbiol 68:, 576–581. [CrossRef][PubMed]
    [Google Scholar]
  54. Sheng H., Knecht H. J., Kudva I. T., Hovde C. J.. ( 2006;). Application of bacteriophages to control intestinal Escherichia coli O157 : H7 levels in ruminants. . Appl Environ Microbiol 72:, 5359–5366. [CrossRef][PubMed]
    [Google Scholar]
  55. Skurnik M., Pajunen M., Kiljunen S.. ( 2007;). Biotechnological challenges of phage therapy. . Biotechnol Lett 29:, 995–1003. [CrossRef][PubMed]
    [Google Scholar]
  56. Skurnik M., Hyytiäinen H. J., Happonen L. J., Kiljunen S., Datta N., Mattinen L., Williamson K., Kristo P., Szeliga M.. & other authors ( 2012;). Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37. . J Virol 86:, 12625–12642. [CrossRef][PubMed]
    [Google Scholar]
  57. Sulakvelidze A., Alavidze Z., Morris J. G. Jr. ( 2001;). Bacteriophage therapy. . Antimicrob Agents Chemother 45:, 649–659. [CrossRef][PubMed]
    [Google Scholar]
  58. Suttle C. A.. ( 2005;). Viruses in the sea. . Nature 437:, 356–361. [CrossRef][PubMed]
    [Google Scholar]
  59. Suzek B. E., Ermolaeva M. D., Schreiber M., Salzberg S. L.. ( 2001;). A probabilistic method for identifying start codons in bacterial genomes. . Bioinformatics 17:, 1123–1130. [CrossRef][PubMed]
    [Google Scholar]
  60. Thomas J. A., Weintraub S. T., Wu W., Winkler D. C., Cheng N., Steven A. C., Black L. W.. ( 2012;). Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage φKZ. . Mol Microbiol 84:, 324–339. [CrossRef][PubMed]
    [Google Scholar]
  61. Twort F.. ( 1915;). An investigation on the nature of ultra-microscopic viruses. . Lancet 2:, 1241–1243. [CrossRef]
    [Google Scholar]
  62. Varjosalo M., Sacco R., Stukalov A., van Drogen A., Planyavsky M., Hauri S., Aebersold R., Bennett K. L., Colinge J.. & other authors ( 2013;). Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. . Nat Methods 10:, 307–314. [CrossRef][PubMed]
    [Google Scholar]
  63. Villegas A., She Y.-M., Kropinski A. M., Lingohr J. E., Mazzocco A., Ojha S., Waddell T. E., Ackermann H.-W., Moyles D. M.. & other authors ( 2009;). The genome and proteome of a virulent Escherichia coli O157 : H7 bacteriophage closely resembling Salmonella phage Felix O1. . Virol J 6:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  64. Wang G., Zhao T., Doyle M. P.. ( 1996;). Fate of enterohemorrhagic Escherichia coli O157 : H7 in bovine feces. . Appl Environ Microbiol 62:, 2567–2570.[PubMed]
    [Google Scholar]
  65. Weinbauer M. G.. ( 2004;). Ecology of prokaryotic viruses. . FEMS Microbiol Rev 28:, 127–181. [CrossRef][PubMed]
    [Google Scholar]
  66. Wyborn N. R., Mills J., Williams S. G., Jones C. W.. ( 1996;). Molecular characterisation of formamidase from Methylophilus methylotrophus. . Eur J Biochem 240:, 314–322. [CrossRef][PubMed]
    [Google Scholar]
  67. Young I., Wang I.-N., Roof W. D.. ( 2000;). Phages will out: strategies of host cell lysis. . Trends Microbiol 8:, 120–128. [CrossRef][PubMed]
    [Google Scholar]
  68. Zhao S., White D. G., Ge B., Ayers S., Friedman S., English L., Wagner D., Gaines S., Meng J.. ( 2001;). Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. . Appl Environ Microbiol 67:, 1558–1564. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063776-0
Loading
/content/journal/micro/10.1099/mic.0.063776-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error