1887

Abstract

Mycolic acids, very long-chain α-alkyl, β-hydroxylated fatty acids, occur in the members of the order where their chain lengths (C–C) and structural features (oxygen functions, or double bonds, cyclopropane rings and methyl branches) are genus- and species-specific. The molecular composition and structures of the mycolic acids of two species belonging to the genus were determined by a combination of modern analytical chemical techniques, which include MS and NMR. They consist of mono-ethylenic CC (α′), di-ethylenic C–C (α) and extremely long-chain mycolic acids (α) ranging from 92 to 98 carbon atoms and containing three unsaturations, and/or double bonds and/or cyclopropanes. The double bonds in each class of mycolic acids were positioned by oxidative cleavage and exhibit locations similar to those of α- and α′-mycolic acids of mycobacteria. For the ultralong chain α-mycolic acids, the three double bonds were located at equally spaced carbon intervals (C–C), with the methyl branches adjacent to the proximal and distal double bonds. Examination of the genome compared with those of other members of the indicated two obvious differences in genes encoding the elongation fatty acid (FAS-II) enzymes involved in the biosynthesis of mycolic acids: the organization of 3-ketoacyl-ACP synthases (KasA and KasB) and (3)-hydroxyacyl-ACP dehydratases (HadAB/BC), on one hand, and the presence of two copies of the gene encoding the catalytic domain of the latter enzyme type, on the other. This observation is discussed in light of the most recent data accumulated on the biosynthesis of this hallmark of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063479-0
2013-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/191.html?itemId=/content/journal/micro/10.1099/mic.0.063479-0&mimeType=html&fmt=ahah

References

  1. Asselineau C., Asselineau J., Lanéelle G., Lanéelle M. A. ( 2002). The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. Prog Lipid Res 41:501–523 [View Article][PubMed]
    [Google Scholar]
  2. Barry C. E. III, Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y. ( 1998). Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179 [View Article][PubMed]
    [Google Scholar]
  3. Bhatt A., Fujiwara N., Bhatt K., Gurcha S. S., Kremer L., Chen B., Chan J., Porcelli S. A., Kobayashi K. & other authors ( 2007). Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104:5157–5162 [View Article][PubMed]
    [Google Scholar]
  4. Bordet C., Michel G. ( 1969). Structure et biogenèse des lipides a haut poids moléculaire de Nocardia asteroides . Bull Soc Chim Biol (Paris) 51:527–548[PubMed]
    [Google Scholar]
  5. Butler W. R., Floyd M. M., Brown J. M., Toney S. R., Daneshvar M. I., Cooksey R. C., Carr J., Steigerwalt A. G., Charles N. ( 2005). Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov.. Int J Syst Evol Microbiol 55:1615–1624 [View Article][PubMed]
    [Google Scholar]
  6. Daffé M., Lanéelle M. A., Asselineau C., Lévy-Frébault V., David H. ( 1983). Intérêt taxonomique des acides gras des mycobactéries: proposition d’une méthode d’analyse. Ann Microbiol (Inst Pasteur) 134:241–256 [CrossRef]
    [Google Scholar]
  7. Daffé M., Lanéelle M. A., Lacave C. ( 1991). Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans . Res Microbiol 142:397–403 [View Article][PubMed]
    [Google Scholar]
  8. Gao L. Y., Laval F., Lawson E. H., Groger R. K., Woodruff A., Morisaki J. H., Cox J. S., Daffé M., Brown E. J. ( 2003). Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563 [View Article][PubMed]
    [Google Scholar]
  9. Hong S., Cheng T.-Y., Layre E., Sweet L., Young D. C., Posey J. E., Butler W. R., Moody D. B. ( 2012). Ultralong C100 mycolic acids support the assignment of Segniliparus as a new bacterial genus. PLoS ONE 7:e39017 [View Article][PubMed]
    [Google Scholar]
  10. Kremer L., Dover L. G., Carrère S., Nampoothiri K. M., Lesjean S., Brown A. K., Brennan P. J., Minnikin D. E., Locht C., Besra G. S. ( 2002). Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis . Biochem J 364:423–430 [View Article][PubMed]
    [Google Scholar]
  11. Lanéelle M. A., Launay A., Spina L., Marrakchi H., Laval F., Eynard N., Lemassu A., Tropis M., Daffé M., Etienne G. ( 2012). A novel mycolic acid species defines two novel genera of the Actinobacteria, Hoyosella and Amycolicicoccus . Microbiology 158:843–855 [View Article][PubMed]
    [Google Scholar]
  12. Laval F., Lanéelle M. A., Déon C., Monsarrat B., Daffé M. ( 2001). Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544 [View Article][PubMed]
    [Google Scholar]
  13. Laval F., Haites R., Movahedzadeh F., Lemassu A., Wong C. Y., Stoker N., Billman-Jacobe H., Daffé M. ( 2008). Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem 283:1419–1427 [View Article][PubMed]
    [Google Scholar]
  14. Marrakchi H., Zhang Y. M., Rock C. O. ( 2002). Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem Soc Trans 30:1050–1055 [View Article][PubMed]
    [Google Scholar]
  15. Marrakchi H., Bardou F., Lanéelle M. A., Daffé M. ( 2008). A comprehensive overview of mycolic acid structure and biosynthesis. The Mycobacterial Cell Envelope41–62 Daffé M., Reyrat J. M. Washington, DC: ASM Press;
    [Google Scholar]
  16. Minnikin D. E. ( 1982). Lipids: complex lipids, their chemistry, biochemistry and roles. The Biology of the Mycobacteria vol. I95–184 Ratledge C., Stanford J. London: Academic Press;
    [Google Scholar]
  17. Minnikin D. E., Minnikin S. M., Goodfellow M., Stanford J. L. ( 1982). The mycolic acids of Mycobacterium chelonei . J Gen Microbiol 128:817–822[PubMed]
    [Google Scholar]
  18. Odham G., Stenhagen E. ( 1972). Fatty acids. Biochemical Applications of Mass Spectrometry211–228 Waller G. R. New York: Wiley-Interscience;
    [Google Scholar]
  19. Portevin D., De Sousa-D’Auria C., Houssin C., Grimaldi C., Chami M., Daffé M., Guilhot C. ( 2004). A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319 [View Article][PubMed]
    [Google Scholar]
  20. Portevin D., de Sousa-D’Auria C., Montrozier H., Houssin C., Stella A., Lanéelle M. A., Bardou F., Guilhot C., Daffé M. ( 2005). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874 [View Article][PubMed]
    [Google Scholar]
  21. Rafidinarivo E., Promé J. C., Lévy-Frébault V. ( 1985). New kinds of unsaturated mycolic acids from Mycobacterium fallax sp. nov.. Chem Phys Lipids 36:215–228 [View Article]
    [Google Scholar]
  22. Ratledge C. ( 1976). The physiology of Mycobacteria. Advances in Microbial Physiology vol. 13115–244 Rose A. H., Tempest D. W. London: Academic Press;
    [Google Scholar]
  23. Sacco E., Covarrubias A. S., O’Hare H. M., Carroll P., Eynard N., Jones T. A., Parish T., Daffé M., Bäckbro K., Quémard A. ( 2007). The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 104:14628–14633 [View Article][PubMed]
    [Google Scholar]
  24. Schaeffer M. L., Agnihotri G., Volker C., Kallender H., Brennan P. J., Lonsdale J. T. ( 2001). Purification and biochemical characterization of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276:47029–47037 [View Article][PubMed]
    [Google Scholar]
  25. Sikorski J., Lapidus A., Copeland A., Misra M., Glavina Del Rio T., Nolan M., Lucas S., Chen F., Tice H. & other authors ( 2010). Complete genome sequence of Segniliparus rotundus type strain (CDC 1076T). Stand Genomic Sci 2:203–211 [View Article][PubMed]
    [Google Scholar]
  26. Slayden R. A., Barry C. E. III ( 2002). The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis . Tuberculosis (Edinb) 82:149–160 [View Article][PubMed]
    [Google Scholar]
  27. Villeneuve M., Kawai M., Kanashima H., Watanabe M., Minnikin D. E., Nakahara H. ( 2005). Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis . Biochim Biophys Acta 1715:71–80 [View Article][PubMed]
    [Google Scholar]
  28. Villeneuve M., Kawai M., Watanabe M., Aoyagi Y., Hitotsuyanagi Y., Takeya K., Gouda H., Hirono S., Minnikin D. E., Nakahara H. ( 2007). Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta 1768:1717–1726 [View Article][PubMed]
    [Google Scholar]
  29. Von Rudloff E. ( 1956). Periodate-permanganate oxidations V. Oxidation of lipids in media containing organic solvents. Can J Chem 34:1413–1418 [View Article]
    [Google Scholar]
  30. Watanabe M., Aoyagi Y., Ridell M., Minnikin D. E. ( 2001). Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837[PubMed]
    [Google Scholar]
  31. Watanabe M., Aoyagi Y., Mitome H., Fujita T., Naoki H., Ridell M., Minnikin D. E. ( 2002). Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–1902[PubMed]
    [Google Scholar]
  32. Yasuhiro K., Goldman D. S. ( 1965). Direct incorporation of octanoate into long-chain fatty acids by soluble enzymes of Mycobacterium tuberculosis . Biochim Biophys Acta 98:476–485 [View Article][PubMed]
    [Google Scholar]
  33. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Daffé M. ( 2008). Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063479-0
Loading
/content/journal/micro/10.1099/mic.0.063479-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error